Skip to main content

Advertisement

Log in

Abrasion Resistance and Microstructural Properties of Sustainable Geopolymer Mortar Produced with Hybrid Blends of GGBFS and Various Earth Materials

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The objective of this experimental study was to investigate the impact of different earth precursors, partially substituted with ground-granulated blast furnace slag (GGBFS), at varying replacement levels of 0–25% with 5% increments, on abrasion resistance, SEM analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) tests after 90 days and compressive strength with dry density test at 28 days curing age. The precursors derived from waste aluminosilicate sources, such as metakaolin (MK), pumice powder (PP), waste ceramic powder (C), and bentonite (B), were utilized to produce GPMs. A total of 21 different combinations from four distinct series were produced. Depending on the results, it was found that all earth materials used had a positive effect on all properties at various replacement ratios. After 28 days, the mix containing 5% B reached its maximum strength of 64.15 MPa. The maximum values for abrasion resistance and compressive strength were obtained when the replacement level was 10% for all precursors, except bentonite, which achieved the best results at a replacement level of 5%. At a 25% replacement level, pumice powder showed superior performance on all properties compared to other precursors. Furthermore, the impact of the replacement level and precursor types was statistically evaluated using the two-way analysis of variance (MINITAB-ANOVA) technique. The statistical study showed that all variables had a substantial impact on the characteristics of the geopolymer mortar. The proposed geopolymer materials possess inherent stability, making them viable and sustainable substitutes for conventional construction materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zaid, O.; Sor, N.A.H.; Martínez-García, R.; de Prado-Gil, J.; Elhadi, K.M.; Yosri, A.M.: Sustainability evaluation, engineering properties and challenges relevant to geopolymer concrete modified with different nanomaterials: a systematic review. Ain Shams Eng. J. 2, 102373 (2023). https://doi.org/10.1016/j.asej.2023.102373

    Article  Google Scholar 

  2. Leung, D.Y.; Caramanna, G.; Maroto-Valer, M.M.: An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014). https://doi.org/10.1016/j.rser.2014.07.093

    Article  Google Scholar 

  3. Albidah, A.; Alghannam, M.; Abbas, H.; Almusallam, T.; Al-Salloum, Y.: Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J. Market. Res. 10, 84–98 (2021). https://doi.org/10.1016/j.jmrt.2020.11.104

    Article  Google Scholar 

  4. Bheel, N.; Ali, M.O.A.; Liu, Y.; Tafsirojjaman, T.; Awoyera, P.; Sor, N.H.; Bendezu Romero, L.M.: Utilization of corn cob ash as fine aggregate and ground granulated blast furnace slag as cementitious material in concrete. Buildings 11(9), 422 (2021). https://doi.org/10.3390/buildings11090422

    Article  Google Scholar 

  5. Aadi, A. S.; Sor, N. H.; Mohammed, A. A. (2021). The behavior of eco-friendly self–compacting concrete partially utilized ultra-fine eggshell powder waste. In Journal of Physics: Conference Series (Vol. 1973, No. 1, p. 012143). IOP Publishing. DOI https://doi.org/10.1088/1742-6596/1973/1/012143

  6. Driouich, A.; El Hassani, S. A.; Sor, N. H.; Zmirli, Z.; Mydin, M. A. O.; Aziz, A.; Chaair, H. (2023). Mix design optimization of metakaolin-slag-based geopolymer concrete synthesis using RSM. Res. Eng. (20) 101573. https://doi.org/10.1016/j.rineng.2023.101573

  7. Sarıdemir, M.; Çelikten, S.: Investigation of fire and chemical effects on the properties of alkali-activated lightweight concretes produced with basaltic pumice aggregate. Constr. Build. Mater. 260, 119969 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119969

    Article  Google Scholar 

  8. Davidovits, J.: Geopolymers: inorganic polymeric new materials. J. Therm. Anal. Calorim. 37(8), 1633–1656 (1991). https://doi.org/10.1007/bf01912193

    Article  Google Scholar 

  9. Wongsa, A.; Kunthawatwong, R.; Naenudon, S.; Sata, V.; Chindaprasirt, P.: Natural fiber reinforced high calcium fly ash geopolymer mortar. Constr. Build. Mater. 241, 118143 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118143

    Article  Google Scholar 

  10. Angelin Lincy, G.; Velkennedy, R.: Experimental optimization of metakaolin and nanosilica composite for geopolymer concrete paver blocks. Struct. Concr. 22, E442–E451 (2021). https://doi.org/10.1002/suco.201900555

    Article  Google Scholar 

  11. Çelikten, S.; Atabey, İİ; Bayer Öztürk, Z.: Cleaner environment approach by the utilization of ceramic sanitaryware waste in Portland cement mortar at ambient and elevated temperatures. Iran. J. Sci. Technol. Trans. Civil Eng. 46(6), 4291–4301 (2022). https://doi.org/10.1007/s40996-022-00955-1

    Article  Google Scholar 

  12. Çelikten, S.: The influence of blast furnace slag content on the mechanical and durability properties of raw perlite-based geopolymer mortars. J. Eng. Res. 10, 112–123 (2022)

    Google Scholar 

  13. Celikten, S.; Erdoğan, G.: Effects of perlite/fly ash ratio and the curing conditions on the mechanical and microstructural properties of geopolymers subjected to elevated temperatures. Ceram. Int. 48(19), 27870–27877 (2022). https://doi.org/10.1016/j.ceramint.2022.06.089

    Article  Google Scholar 

  14. Çelikten, S.; Sarıdemir, M.; Deneme, İÖ.: Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Constr. Build. Mater. 217, 50–61 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.055

    Article  Google Scholar 

  15. Ji, T.: Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem. Concr. Res. 35(10), 1943–1947 (2005). https://doi.org/10.1016/j.cemconres.2005.07.004

    Article  Google Scholar 

  16. Bakharev, T.: Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 36(6), 1134–1147 (2006). https://doi.org/10.1016/j.cemconres.2006.03.022

    Article  Google Scholar 

  17. Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Mirza, J.; Tahir, M.M.: Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Constr. Build. Mater. 210, 78–92 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.194

    Article  Google Scholar 

  18. Dimas, D.; Giannopoulou, I.; Panias, D.: Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J. Mater. Sci. 44(14), 3719–3730 (2009). https://doi.org/10.1007/s10853-009-3497-5

    Article  Google Scholar 

  19. Allahverdi, A.L.I.; Mehrpour, K.; Kani, E.N.: Investigating the possibility of utilizing pumice-type natural pozzonal in production of geopolymer cement. Ceram. Silikaty 52(1), 16 (2008)

    Google Scholar 

  20. Karaaslan, C.; Yener, E.; Bağatur, T.; Polat, R.: Improving the durability of pumice-fly ash based geopolymer concrete with calcium aluminate cement. J. Build. Eng. 59, 105110 (2022). https://doi.org/10.1016/j.jobe.2022.105110

    Article  Google Scholar 

  21. Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S.: Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives. Environ. Sci. Pollut. Res. 24, 4433–4446 (2017). https://doi.org/10.1007/s11356-016-8230-8

    Article  Google Scholar 

  22. Firdous, R.; Stephan, D.; Djobo, J.N.Y.: Natural pozzolan based geopolymers: a review on mechanical, microstructural and durability characteristics. Constr. Build. Mater. 190, 1251–1263 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.191

    Article  Google Scholar 

  23. Barbosa, V.F.; MacKenzie, K.J.; Thaumaturgo, C.: Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2(4), 309–317 (2000). https://doi.org/10.1016/S1466-6049(00)00041-6

    Article  Google Scholar 

  24. Xu, H.; Van Deventer, J.S.: Geopolymerisation of multiple minerals. Miner. Eng. 15(12), 1131–1139 (2002). https://doi.org/10.1016/S0892-6875(02)00255-8

    Article  Google Scholar 

  25. Balun, B.; Karataş, M.: Influence of curing conditions on pumice-based alkali activated composites incorporating Portland cement. J. Build. Eng. 43, 102605 (2021). https://doi.org/10.1016/j.jobe.2021.102605

    Article  Google Scholar 

  26. Shoaei, P.; Ameri, F.; Musaeei, H.R.; Ghasemi, T.; Cheah, C.B.: Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: a comprehensive comparative study. Constr. Build. Mater. 251, 118991 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118991

    Article  Google Scholar 

  27. Abdollahnejad, Z.; Mastali, M.; Woof, B.; Illikainen, M.: High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: Microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Constr. Build. Mater. 241, 118129 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118129

    Article  Google Scholar 

  28. Mermerdaş, K.; İpek, S.; Hamah Sor, N.; Mulapeer, E.S.; Ekmen, Ş: The impact of artificial lightweight aggregate on the engineering features of geopolymer mortar. Türk Doğa ve Fen Dergisi 9(1), 79–90 (2020)

    Article  Google Scholar 

  29. Patrisia, Y.; Law, D.; Gunasekara, C.; Wardhono, A.: The role of Na2O dosage in iron-rich fly ash geopolymer mortar. Arch. Civil Mech. Eng. 22(4), 181 (2022). https://doi.org/10.1007/s43452-022-00509-2

    Article  Google Scholar 

  30. Bheel, N.; Awoyera, P.; Tafsirojjaman, T.; Sor, N.H.: Synergic effect of metakaolin and groundnut shell ash on the behavior of fly ash-based self-compacting geopolymer concrete. Constr. Build. Mater. 311, 125327 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125327

    Article  Google Scholar 

  31. Sevim, O.; Alakara, E.H.; Demir, I.; Bayer, I.R.: Effect of magnetic water on properties of slag-based geopolymer composites incorporating ceramic tile waste from construction and demolition waste. Arch. Civil Mech. Eng. 23(2), 107 (2023). https://doi.org/10.1007/s43452-023-00649-z

    Article  Google Scholar 

  32. Hu, Y.; Tang, Z.; Li, W.; Li, Y.; Tam, V.W.: Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Constr. Build. Mater. 226, 139–151 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.211

    Article  Google Scholar 

  33. Alsaif, A.; Albidah, A.; Abadel, A.; Abbas, H.; Al-Salloum, Y.: Development of metakaolin-based geopolymer rubberized concrete: fresh and hardened properties. Arch. Civil Mech. Eng. 22(3), 144 (2022). https://doi.org/10.1007/s43452-022-00464-y

    Article  Google Scholar 

  34. Halicka, A.; Ogrodnik, P.; Zegardlo, B.: Using ceramic sanitary ware waste as concrete aggregate. Constr. Build. Mater. 48, 295–305 (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.063

    Article  Google Scholar 

  35. Turkish Ceramic Federation: Ceramic industry domestic value-added report & Period 8 (June 2017-June 2019) Activity report. (2019).

  36. Rashad, A.M.; Essa, G.M.: Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement Concr. Compos. 111, 103617 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103617

    Article  Google Scholar 

  37. Cosa, J.; Soriano, L.; Borrachero, M.V.; Reig, L.; Payá, J.; Monzó, J.M.: The compressive strength and microstructure of alkali-activated binary cements developed by combining ceramic sanitaryware with fly ash or blast furnace slag. Minerals 8(8), 337 (2018). https://doi.org/10.3390/min8080337

    Article  Google Scholar 

  38. Kabay, N.; Tufekci, M.M.; Kizilkanat, A.B.; Oktay, D.: Properties of concrete with pumice powder and fly ash as cement replacement materials. Constr. Build. Mater. 85, 1–8 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.026

    Article  Google Scholar 

  39. Safari, Z.; Kurda, R.; Al-Hadad, B.; Mahmood, F.; Tapan, M.: Mechanical characteristics of pumice-based geopolymer paste. Resour. Conserv. Recycl. 162, 105055 (2020). https://doi.org/10.1016/j.resconrec.2020.105055

    Article  Google Scholar 

  40. Yang, H.; Long, D.; Zhenyu, L.; Yuanjin, H.; Tao, Y.; Xin, H.; Shuzhen, L.: Effects of bentonite on pore structure and permeability of cement mortar. Constr. Build. Mater. 224, 276–283 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.073

    Article  Google Scholar 

  41. Liu, M.; Hu, Y.; Lai, Z.; Yan, T.; He, X.; Wu, J.; Lv, S.: Influence of various bentonites on the mechanical properties and impermeability of cement mortars. Constr. Build. Mater. 241, 118015 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118015

    Article  Google Scholar 

  42. Laidani, Z.E.A.; Benabed, B.; Abousnina, R.; Gueddouda, M.K.; Khatib, M.J.: Potential pozzolanicity of Algerian calcined bentonite used as cement replacement: optimisation of calcination temperature and effect on strength of self-compacting mortars. Eur. J. Environ. Civ. Eng. 26(4), 1379–1401 (2022). https://doi.org/10.1080/19648189.2020.1713898

    Article  Google Scholar 

  43. Zhang, G.Y.; Ahn, Y.H.; Lin, R.S.; Wang, X.Y.: Effect of waste ceramic powder on properties of alkali-activated blast furnace slag paste and mortar. Polymers 13(16), 2817 (2021). https://doi.org/10.3390/polym13162817

    Article  Google Scholar 

  44. Provis, J.L.; Lukey, G.C.; van Deventer, J.S.: Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem. Mater. 17(12), 3075–3085 (2005). https://doi.org/10.1021/cm050230i

    Article  Google Scholar 

  45. Yan, B.; Duan, P.; Ren, D.: Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceram. Int. 43(1), 1052–1060 (2017). https://doi.org/10.1016/j.ceramint.2016.10.039

    Article  Google Scholar 

  46. Lakew, A.M.; Mukhallad, M.; Canpolat, O.: Strength and abrasıon performance of recycled aggregate based geopolymer concrete. Sigma J. Eng. Nat. Sci. 40(1), 155–161 (2021)

    Google Scholar 

  47. Uysal, M.; Al-mashhadani, M.M.; Aygörmez, Y.; Canpolat, O.: Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Constr. Build. Mater. 176, 271–282 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.034

    Article  Google Scholar 

  48. ASTM C618-23, Standard Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2023.

  49. Cheng, T.W.; Chiu, J.P.: Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 16(3), 205–210 (2003). https://doi.org/10.1016/S0892-6875(03)00008-6

    Article  Google Scholar 

  50. Yener, E.; Karaaslan, C.: Curing time and temperature effect on the resistance to wet-dry cycles of fly ash added pumice based geopolymer. Cement Based Compos. 1(2), 19–25 (2020). https://doi.org/10.1016/j.jobe.2022.105110

    Article  Google Scholar 

  51. Yahya, Z.; Abdullah, M.M.A.B.; Hussin, K.; Ismail, K.N.; Abd Razak, R.; Sandu, A.V.: Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials 8(5), 2227–2242 (2015). https://doi.org/10.3390/ma8052227

    Article  Google Scholar 

  52. Al Bakri Abdullah, M. M.; Kamarudin, H.; Ismail, K. N.; Bnhussain, M.; Zarina, Y.; Rafiza, A. R. (2012). Correlation between Na2SiO3/NaOH ratio and fly ash/alkaline activator ratio to the strength of geopolymer. In Advanced Materials Research (Vol. 341, pp. 189–193). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.341-342.189

  53. Abdullah, M. M. A. B.; Kamarudin, H.; Bnhussain, M.; Ismail, K. N.; Rafiza, A. R.; Zarina, Y. (2011). The relationship of NaOH molarity, Na2SiO3/NaOH ratio, fly ash/alkaline activator ratio, and curing temperature to the strength of fly ash-based geopolymer. In Advanced Materials Research (Vol. 328, pp. 1475–1482). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.328-330.1475

  54. ASTM C 33-18. Standard specifcation for concrete aggregates. West Conshohocken: ASTM International; 2018.

  55. ASTM C494F-19 (2019) Standard specification for chemical admixtures for concrete. ASTM International, West Conshohocken. https://doi.org/10.1520/c0494_c0494m-19

  56. Hamah Sor, N.: The effect of superplasticizer dosage on fresh properties of self-compacting lightweight concrete produced with coarse pumice aggregate. J. Garmian Univ. 5(2), 190–209 (2018)

    Article  Google Scholar 

  57. Alanazi, H.; Hu, J.; Kim, Y.R.: Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Constr. Build. Mater. 197, 747–756 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.172

    Article  Google Scholar 

  58. ASTM C138/C138M-17a. Standard test method for density (unit weight), yield, and air content (Gravimetric) of concrete. West Conshohocken: ASTM International; 2017. https://doi.org/10.1520/C0138_C0138M-17A

  59. ASTM C109/C109M-20b. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in or [50 mm] Cube Specimens). West Conshohocken: ASTM International; 2020. https://doi.org/10.1520/C0109_C0109M-20B

  60. DIN52108. (2010). Wear testing of inorganic, nonmetallic materials using the Böhme abrasive wheel

  61. ASTM C1723-22 (2022) Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy. ASTM International, West Conshohocken

  62. Kakali, G.; Perraki, T.H.; Tsivilis, S.; Badogiannis, E.: Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl. Clay Sci. 20(1–2), 73–80 (2001). https://doi.org/10.1016/S0169-1317(01)00040-0

    Article  Google Scholar 

  63. Sahith Reddy, S.; Reddy, A.K.; M.: Optimization of calcined bentonite clay utilization in cement mortar using response surface methodology. Int. J. Eng. 34(7), 1623–1631 (2021). https://doi.org/10.5829/IJE.2021.34.07A.07

    Article  Google Scholar 

  64. Dhir, K.; Mays, R.G.C.; Chua, H.C.: Lightweight structural concrete with aglite aggregate: mix design and properties. Int. J. Cem. Compos. Lightweight Concrete 6(4), 249–261 (1984). https://doi.org/10.1016/0262-5075(84)90020-4

    Article  Google Scholar 

  65. Ahmed, S.N.; Sor, N.H.; Ahmed, M.A.; Qaidi, S.M.: Thermal conductivity and hardened behavior of eco-friendly concrete incorporating waste polypropylene as fine aggregate. Mater. Today Proc. 57, 818–823 (2022). https://doi.org/10.1016/j.matpr.2022.02.417

    Article  Google Scholar 

  66. Mor, A.: Steel-concrete bond in high-strength lightweight concrete. Mater. J. 89(1), 76–82 (1993)

    Google Scholar 

  67. Schumacher, K.; Saßmannshausen, N.; Pritzel, C.; Trettin, R.: Lightweight aggregate concrete with an open structure and a porous matrix with an improved ratio of compressive strength to dry density. Constr. Build. Mater. 264, 120167 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120167

    Article  Google Scholar 

  68. Asaad, M.A.; Huseien, G.F.; Memon, R.P.; Ghoshal, S.K.; Mohammadhosseini, H.; Alyousef, R.: Enduring performance of alkali-activated mortars with metakaolin as granulated blast furnace slag replacement. Case Stud. Constr. Mater 16, e00845 (2022). https://doi.org/10.1016/j.cscm.2021.e00845

    Article  Google Scholar 

  69. Huang, Y.: Influence of calcium bentonite addition on the compressive strength, efflorescence extent and drying shrinkage of fly-ash based geopolymer mortar. Trans. Indian Ceram. Soc. 79(2), 77–82 (2020). https://doi.org/10.1080/0371750X.2020.1719206

    Article  Google Scholar 

  70. Lee, H.H.; Wang, C.W.; Chung, P.Y.: Experimental study on the strength and durability for slag cement mortar with bentonite. Appl. Sci. 11(3), 1176 (2021). https://doi.org/10.3390/app11031176

    Article  Google Scholar 

  71. Borges, P.H.; Banthia, N.; Alcamand, H.A.; Vasconcelos, W.L.; Nunes, E.H.: Performance of blended metakaolin/blastfurnace slag alkali-activated mortars. Cement Concr. Compos. 71, 42–52 (2016). https://doi.org/10.1016/j.cemconcomp.2016.04.008

    Article  Google Scholar 

  72. Faridmehr, I.; Bedon, C.; Huseien, G.F.; Nikoo, M.; Baghban, M.H.: Assessment of mechanical properties and structural morphology of alkali-activated mortars with industrial waste materials. Sustainability 13(4), 2062 (2021). https://doi.org/10.3390/su13042062

    Article  Google Scholar 

  73. Liu, B.; Meng, H.; Pan, G.; Zhou, H.; Li, D.: Relationship between the fineness and specific surface area of iron tailing powder and its effect on compressive strength and drying shrinkage of cement composites. Constr. Build. Mater. 357, 129421 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129421

    Article  Google Scholar 

  74. Gao, X.; Yu, Q.L.; Brouwers, H.J.H.: Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Constr. Build. Mater. 119, 175–184 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.026

    Article  Google Scholar 

  75. Khalifa, A.Z.; Cizer, Ö.; Pontikes, Y.; Heath, A.; Patureau, P.; Bernal, S.A.; Marsh, A.T.: Advances in alkali-activation of clay minerals. Cem. Concr. Res. 132, 106050 (2020). https://doi.org/10.1016/j.cemconres.2020.106050

    Article  Google Scholar 

  76. Burciaga-Díaz, O.; Durón-Sifuentes, M.; Díaz-Guillén, J.A.; Escalante-García, J.I.: Effect of waste glass incorporation on the properties of geopolymers formulated with low purity metakaolin. Cement Concr. Compos. 107, 103492 (2020). https://doi.org/10.1016/j.cemconcomp.2019.103492

    Article  Google Scholar 

  77. Gadsden, J.A.: Infrared Spectra of Minerals and Related Inorganic Compounds. Butterworths (1975)

    Google Scholar 

  78. Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J.: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J. Am. Ceram. Soc. 86(8), 1389–1394 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03481.x

    Article  Google Scholar 

  79. Stubičan, V.; Roy, R.: Infrared spectra of layer-structure silicates. J. Am. Ceram. Soc. 44(12), 625–627 (1961). https://doi.org/10.1111/j.1151-2916.1961.tb11670.x

    Article  Google Scholar 

  80. Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; Van Deventer, J.S.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A 269(1–3), 47–58 (2005). https://doi.org/10.1016/j.colsurfa.2005.06.060

    Article  Google Scholar 

  81. Che, C.; Glotch, T.D.; Bish, D.L.; Michalski, J.R.; Xu, W.: Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals. J. Geophys. Res. Planets 116(E5), 522 (2011). https://doi.org/10.1029/2010JE003740

    Article  Google Scholar 

  82. Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J.: The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater. 91(13), 111–119 (2006). https://doi.org/10.1016/j.micromeso.2005.11.015

    Article  Google Scholar 

  83. García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M.T.: (2008) FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Technol. 45(1), 63–72. https://doi.org/10.1007/s10971-007-1643-6

  84. Li, N.; Farzadnia, N.; Shi, C.: Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem. Concr. Res. 100, 214–226 (2017). https://doi.org/10.1016/j.cemconres.2017.07.008

    Article  Google Scholar 

  85. Król, M.; Minkiewicz, J.; Mozgawa, W.: IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. J. Mol. Struct. 1126, 200–206 (2016). https://doi.org/10.1016/j.molstruc.2016

    Article  Google Scholar 

  86. Król, M.; Mozgawa, W.; Morawska, J.; Pichór, W.: Spectroscopic investigation of hydrothermally synthesized zeolites from expanded perlite. Microporous Mesoporous Mater. 196, 216–222 (2014). https://doi.org/10.1016/j.micromeso.2014.05.017

    Article  Google Scholar 

  87. Escribano, R.; Timón, V.; Gálvez, O.; Maté, B.; Moreno, M.A.; Herrero, V.J.: On the infrared activation of the breathing mode of methane in ice. Phys. Chem. Chem. Phys. 16(31), 16694–16700 (2014). https://doi.org/10.1039/c4cp01573h

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Harran University Scientific Research Projects Coordination Unit (HÜBAP) for financial support for microstructure properties tests under grant number 22131. Project Name: "Evaluation of the durability and mechanical performance of mortars produced with energy efficient, alkali activated earth materials exposed to aggressive environments" (In Turkish).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhim Hamah Sor.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamah Sor, N., Mermerdaş, K., Alzeebaree, R. et al. Abrasion Resistance and Microstructural Properties of Sustainable Geopolymer Mortar Produced with Hybrid Blends of GGBFS and Various Earth Materials. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09088-1

Keywords

Navigation