Skip to main content
Log in

Performance Improvement of DLR Scramjet Combustor Using Modified Strut Injector

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Flow field organization significantly influences the performance criterion of a scramjet combustor. Recently, DLR scramjet combustor with strut injector has been mostly used to alter the flow field. Researchers have used innovative strut injectors to enhance the performance of the DLR scramjet combustorHowever, the effect of utilizing a strut with both parallel and normal injections of air and fuel in the DLR scramjet combustor has not been investigated till date. Hence, in this study, the DLR combustor is numerically investigated using a modified strut injector with both parallel and normal injections of air and fuel. The 2D numerical solver is validated with the experimental results having a maximum deviation of 7.3%. The analysis shows that the combustors with modified strut injectors produce better turbulence mixing compared to the DLR combustor, resulting in higher combustion performance. The modified strut combustors, i.e., CMSI-1, CMSI-2, and CMSI-3 produced a combustion efficiency of 76%, 79%, and 81%. In contrast, the maximum combustion efficiency produced by the DLR combustor is 50%. This improvement in the combustion performance of the combustors with modified strut injectors resulted in higher thrust force than the DLR combustor. The thrust force produced by CMSI-1, CMSI-2 and CMSI-3 are 3160 Pa.m2, 3200 Pa.m2 and 3216 Pa.m2, respectively. Finally, it has been found that the CMSI-3 has produced the maximum combustion efficiency and better thrust force among all the scramjet combustor models considered in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Wepler, U.; Koschel, W.W.: Numerical investigation of turbulent reacting flows in a scramjet combustor model. 38th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. (2002). https://doi.org/10.2514/6.2002-3572.

  2. Kishalov, A.E.; Markina, K.V.: Computer-aided design of structural elements of modern turbofan compressors. Procedia Eng. 206, 367–372 (2017). https://doi.org/10.1016/j.proeng.2017.10.487

    Article  Google Scholar 

  3. Barber, M.J.; Schelz, J.A.; Roe, L.A.: Normal, sonic helium injection through a wedge-shaped orifice into supersonic flow. J. Propuls. Power. 13, 257–263 (1997). https://doi.org/10.2514/2.5157

    Article  Google Scholar 

  4. Shan, F.; Hou, L.; Chen, Z.; Chen, J.; Wang, L.: Linearized correction to a flamelet-based model for hydrogen-fueled supersonic combustion. Int. J. Hydrogen Energy 42, 11937–11944 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.100

    Article  Google Scholar 

  5. Choubey, G.; Pandey, K.M.: Numerical studies on the performance of scramjet combustor with alternating wedge-shaped strut injector. Int. J. Turbo Jet Engines. 2015, 1–12 (2015). https://doi.org/10.1515/tjj-2015-0048

    Article  Google Scholar 

  6. Huang, W.; Li, L.Q.; Chen, X.Q.; Yan, L.: Parametric effect on the flow and mixing properties of transverse gaseous injection flow fields with streamwise slot: A numerical study. Int. J. Hydrogen Energy 42(2), 1252–1263 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.028

    Article  Google Scholar 

  7. Berglund, M.; Fureby, C.: LES of supersonic combustion in a scramjet engine model. Proc. Combust. Inst. 31(2), 2497–2504 (2007). https://doi.org/10.1016/j.proci.2006.07.074

    Article  Google Scholar 

  8. Maier, D.; Kirstein, S.; Fuhrmann, T.; Denis, S.R.; Hupfer, A.; Kau, H.P.: Scramjet research activities at the institute of flight propulsion of the technische universitaet muenchen. Eur. Sp. Agency, (Special Publ. ESA SP. 659 SP, 3–6 (2009)

  9. Wu, K.; Zhang, P.; Yao, W.; Fan, X.: Numerical investigation on flame stabilization in DLR hydrogen supersonic combustor with strut injection. Combust. Sci. Technol. 189, 2154–2179 (2017). https://doi.org/10.1080/00102202.2017.136584

    Article  Google Scholar 

  10. Li, J.; Zhang, L.; Choi, J.Y.; Yang, V.; Lin, K.C.: Ignition transients in a scramjet engine with air throttling part 1: Nonreacting flow. J. Propuls. Power. 30, 438–448 (2014). https://doi.org/10.2514/1.B34763

    Article  Google Scholar 

  11. Shin, J.; Sung, H.G.: Comparison of hybrid RANS/LES methods for supersonic combustion in a model scramjet combustor. Notes Numer. Fluid Mech. Multidiscip. Des. 137, 233–242 (2018). https://doi.org/10.1007/978-3-319-70031-1_19

    Article  Google Scholar 

  12. Suneetha, L.; Randive, P.; Pandey, K.M.: Implication of diamond shaped dual strut on combustion characteristics in a cavity-based scramjet combustor. Int. J. Hydrogen Energy 45, 17562–17574 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.217

    Article  Google Scholar 

  13. Choubey, G.; Yuvarajan, D.; Huang, W.; Yan, L.; Babazadeh, H.; Pandey, K.M.: Hydrogen fuel in scramjet engines-a brief review. Int. J. Hydrogen Energy 45(33), 16799–16815 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.086

    Article  Google Scholar 

  14. Baurle, R.A.; Fuller, R.P.; White, J.A.; Chen, T.H.; Gruber, M.R.; Nejad, A.S.: An investigation of advanced fuel injection schemes for scramjet combustion. In: 36th AIAA Aerosp. Sci. Meet. Exhib. (1998). https://doi.org/10.2514/6.1998-937

  15. Choubey, G.; Yuvarajan, D.; Huang, W.; Shafee, A.; Pandey, K.M.: Recent research progress on transverse injection technique for scramjet applications-a brief review. Int. J. Hydrogen Energy 45, 27806–27827 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.098

    Article  Google Scholar 

  16. Soni, R.K.; De, A.: Investigation of strut-ramp injector in a Scramjet combustor: Effect of strut geometry, fuel and jet diameter on mixing characteristics. J. Mech. Sci. Technol. 31, 1169–1179 (2017). https://doi.org/10.1007/s12206-017-0215-0

    Article  Google Scholar 

  17. O. Dessornes, C. Jourdren: MIXING ENHANCEMENT TECHNIQUES IN A SCRAMJET. Am. Inst. Aeronaut. Astronaut. 1–17 (1998)

  18. Waidmann, W.; Alff, F.; Böhm, M.; Brummund, U.; Clauß, W.; Oschwald, M.: Supersonic combustion of hydrogen/air in a scramjet combustion chamber. Sp. Technol. 15, 421–429 (1995). https://doi.org/10.1016/0892-9270(95)00017-8

    Article  Google Scholar 

  19. Waidmann, W.; Alff, F.; Brummund, U.; Bohm, M.; Clauss, W.; Oschwald, M.: Experimental Investigation of the Combustion Process in a Supersonic Combustion Ramjet ( SCRAMJET ) Combustion Chamber. DGLR-Jahrestagung 1994. 10 (1994)

  20. Du, S.; Al-Rashed, A.A.A.A.; Barzegar Gerdroodbary, M.; Moradi, R.; Shahsavar, A.; Talebizadehsardari, P.: Effect of fuel jet arrangement on the mixing rate inside trapezoidal cavity flame holder at supersonic flow. Int. J. Hydrogen Energy 44, 22231–22239 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.020

    Article  Google Scholar 

  21. Oevermann, M.: Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerosp. Sci. Technol. 4, 463–480 (2000). https://doi.org/10.1016/S1270-9638(00)01070-1

    Article  Google Scholar 

  22. Pandey, K.M.; Sivasakthivel, T.: CFD analysis of mixing and combustion of a scramjet combustor with a planer strut injector. Int. J. Environ. Sci. Dev. 2, 102–108 (2011). https://doi.org/10.7763/ijesd.2011.v2.105

    Article  Google Scholar 

  23. Kumar, S.; Pandey, S.T.K.M.: Mixing and combustion analysis of a hydrogen fueled scramjet engine using strut with alternating wedge injector mixing and combustion analysis of a hydrogen fueled scramjet engine using strut with alternating wedge injector. Int. J. Sci. Res. Dev. 2, 544–552 (2014)

    Google Scholar 

  24. Kummitha, O.R.; Suneetha, L.; Pandey, K.M.: Numerical analysis of scramjet combustor with innovative strut and fuel injection techniques. Int. J. Hydrogen Energy 42, 10524–10535 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.213

    Article  Google Scholar 

  25. Kummitha, O.R.; Pandey, K.M.; Gupta, R.: Numerical investigation of wavy wall strut fuel injector for hydrogen fueled scramjet combustor. Int. J. Hydrogen Energy 44, 32240–32253 (2019). https://doi.org/10.1016/j.ijhydene.2019.10.147

    Article  Google Scholar 

  26. Suneetha, L.; Randive, P.; Pandey, K.M.: Numerical investigation on influence of diamond shaped strut on the performance of a scramjet combustor. Int. J. Hydrogen Energy 44, 6949–6964 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.187

    Article  Google Scholar 

  27. Kummitha, O.R.: Numerical analysis of hydrogen fuel scramjet combustor with turbulence development inserts and with different turbulence models. Int. J. Hydrogen Energy 42, 6360–6368 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.137

    Article  Google Scholar 

  28. Kummitha, O.R.: Numerical analysis of passive techniques for optimizing the performance of scramjet combustor. Int. J. Hydrogen Energy 42, 10455–10465 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.148

    Article  Google Scholar 

  29. Kummitha, O.R.; Pandey, K.M.; Gupta, R.: Numerical analysis of hydrogen fueled scramjet combustor with innovative designs of strut injector. Int. J. Hydrogen Energy 45, 13659–13671 (2020). https://doi.org/10.1016/j.ijhydene.2018.04.067

    Article  Google Scholar 

  30. Kummitha, O.R.: Effect of inclined fuel injection in the strut wake region for a hydrogen fueled scramjet combustor. Int. J. Hydrogen Energy 47, 29526–29541 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.263

    Article  Google Scholar 

  31. Anderson, G.Y.; Gooderum, P.B.: Exploratory tests of two strut fuel injectors for supersonic combustion. Nasa Tn D-7581. 49 (1974)

  32. Choubey, G.; Pandey, K.M.: Effect of different strut + wall injection techniques on the performance of two-strut scramjet combustor. Int. J. Hydrogen Energy 42, 13259–13275 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.024

    Article  Google Scholar 

  33. Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.: Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow. Acta Astronaut. 137, 403–414 (2017). https://doi.org/10.1016/j.actaastro.2017.05.007

    Article  Google Scholar 

  34. Debnath, A.; Roy, B.; Sinha, A.: Assesment of RNG k- ε, SST k- ω and reynolds stress models for numerical simulation of DLR scramjet engine. Int. J. Mech. Prod. Eng. Res. Dev. 9, 1157–1166 (2019)

    Google Scholar 

  35. Yao, Z.; Jianfeng, Z.: Partially resolved numerical simulation for supersonic turbulent combustion. A Collect. Tech. Pap. In: 14th AIAA/AHI Int. Sp. Planes Hypersonic Syst. Technol. Conf. 2, 1316–1324 (2006). https://doi.org/10.2514/6.2006-8040

  36. Debnath, A.; Roy, B. (2023). Prediction of maximum combustion efficiency and thrust force of DLR scramjet engine using ANN models. SN Comput. Sci., 4. https://doi.org/10.1007/s42979-023-02020-8

  37. Peterson, D.M.; Boyce, R.R.; Wheatley, V.: Simulations of mixing in an inlet-fueled axisymmetric scramjet. AIAA J. 51, 2823–2832 (2013). https://doi.org/10.2514/1.J052480

    Article  Google Scholar 

  38. Choubey, G.; Pandey, K.M.; Sharma, D.; Debbarma, A.: Computational simulation of multi-strut central lobed injection of hydrogen in a scramjet combustor. Perspect. Sci. 8, 222–224 (2016). https://doi.org/10.1016/j.pisc.2016.04.032

    Article  Google Scholar 

  39. Roy, B.; Misra, R.D.; Pandey, K.M.; Sinha, A.; Deb, B.: Computational and experimental study of swirl flow within SI engine with modified shrouded intake valve. Prog. Comput. Fluid Dyn., Int. J. 19(2), 123–136 (2019). https://doi.org/10.1504/PCFD.2019.098473

    Article  Google Scholar 

  40. Wilcox, D.C.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26, 1299–1310 (1988). https://doi.org/10.2514/3.10041

    Article  MathSciNet  Google Scholar 

  41. Huang, W.; Liu, W.D.; Li, S.B.; Xia, Z.X.; Liu, J.; Wang, Z.G.: Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows. Acta Astronaut. 73, 1–9 (2012). https://doi.org/10.1016/j.actaastro.2011.12.003

    Article  Google Scholar 

  42. Ansys, Inc. (2012). Ansys theory guide (Version 14.5). Ansys, Inc.

  43. Huang, W.; Wang, Z.G.; Luo, S.B.; Liu, J.: Parametric effects on the combustion flow field of a typical strut-based scramjet combustor. Chinese Sci. Bull. 56, 3871–3877 (2011). https://doi.org/10.1007/s11434-011-4823-2

    Article  Google Scholar 

  44. Kumaran, K.; Babu, V.: Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen. Combust. Flame 156, 826–841 (2009). https://doi.org/10.1016/j.combustflame.2009.01.008

    Article  Google Scholar 

  45. Huang, W.; Wang, Z.G.; Li, S.B.; Liu, W.D.: Influences of H2O mass fraction and chemical kinetics mechanism on the turbulent diffusion combustion of H2–O2 in supersonic flows. Acta Astronaut. 76, 51–59 (2012). https://doi.org/10.1016/j.actaastro.2012.02.017

    Article  Google Scholar 

  46. Huang, W.: Investigation on the effect of strut configurations and locations on the combustion performance of a typical scramjet combustor. J. Mech. Sci. Technol. 29, 5485–5496 (2015). https://doi.org/10.1007/s12206-015-1150-6

    Article  Google Scholar 

  47. Choubey, G.; Pandey, K.M.; Maji, A.; Deshmukhya, T.; Debbarma, A.: Computational investigation of multi-strut injection of hydrogen in a scramjet combustor. Mater. Today Proc. 4, 2608–2614 (2017). https://doi.org/10.1016/j.matpr.2017.02.115

    Article  Google Scholar 

  48. Rajasekaran, A.; Babu, V.: Numerical simulation of three-dimensional reacting flow in a model supersonic combustor. J. Propuls. Power. 22, 820–827 (2006). https://doi.org/10.2514/1.14952

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aabir Das.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, A., Das, A. & Roy, B. Performance Improvement of DLR Scramjet Combustor Using Modified Strut Injector. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09013-6

Keywords

Navigation