Skip to main content
Log in

Giant Dielectric Constant and Fast Adsorption–Sunlight Photocatalytic Properties of Al-Doped CuO–ZnO Heterostructures

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, Al-doped CuO–ZnO composite revealed a huge dielectric constant and fast adsorption–photocatalytic properties for industrial Congo red, Reactive yellow 145 and methyl green pollutants. Nanocrystalline ZnO, CuO and Al-doped CuO–ZnO composite was synthesized via sol–gel method. The X-ray diffraction analysis verified that the composite structure has hexagonal ZnO and monoclinic CuO phases. The morphological study of Al-doped CuO–ZnO composite displayed different types of particles having hexagonal, sheet and very fine shapes. Optically, Al-doped CuO–ZnO composite has a high visible light absorption ability compared to its individual components. For energy storage, Al-doped CuO–ZnO composite showed a semi-stable giant dielectric constant with value of 7.6215 × 104 at 42 Hz. Furthermore, Al-doped CuO–ZnO composite exhibited a remarkable adsorption of Congo red, Reactive yellow 145 and methyl green dyes in addition to fast photocatalytic characteristics under sunlight. Herein, 75 mg of Al-doped CuO–ZnO composite exhibits adsorption capacity of 54, 49 and 45% for 100 mL solution contains 20 mg/L Congo red, reactive yellow 145 and methyl green, respectively. As well, the photocatalytic measurements under sunlight confirmed the full removal of all dyes after 20–25 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All relevant data and material are presented in the main paper.

References

  1. Geldasa, F.T.; Kebede, M.A.; Shura, M.W.; Hone, F.G.: Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. RSC Adv. 13, 18404–18442 (2023). https://doi.org/10.1039/D3RA01505J

    Article  Google Scholar 

  2. Wu, H.; Li, L.; Wang, S.; Zhu, N.; Li, Z.; Zhao, L.; Wang, Y.: Recent advances of semiconductor photocatalysis for water pollutant treatment: mechanisms, materials and applications. Phys. Chem. Chem. Phys. 25, 25899–25924 (2023). https://doi.org/10.1039/D3CP03391K

    Article  Google Scholar 

  3. Yeganeh, M.; Charkhloo, E.; Sobhi, H.R.; Esrafili, A.; Gholami, M.: Photocatalytic processes associated with degradation of pesticides in aqueous solutions: systematic review and meta-analysis. Chem. Eng. J. 428, 130081 (2022). https://doi.org/10.1016/j.cej.2021.130081

    Article  Google Scholar 

  4. Lan, J.; Wang, Y.; Huang, B.; Xiao, Z.; Wu, P.: Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Adv. 3, 4646–4658 (2021). https://doi.org/10.1039/D1NA00408E

    Article  Google Scholar 

  5. Khan, S.; Khan, J.A.; Shah, N.S.; Sayed, M.; Ateeq, M.; Ansar, S.; Boczkaj, G.; Farooq, U.: Determination of lindane in surface water samples and its degradation by hydrogen peroxide and persulfate assisted TiO2-based photocatalysis. RSC Adv. 13, 20430–20442 (2023). https://doi.org/10.1039/D3RA03610C

    Article  Google Scholar 

  6. Madkhali, N.; Prasad, C.; Malkappa, K.; Choi, H.Y.; Govinda, V.; Bahadur, I.; Abumousa, R.A.: Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials. Results Eng. 17, 100920 (2023). https://doi.org/10.1016/j.rineng.2023.100920

    Article  Google Scholar 

  7. Hassan, F.; Bonnet, P.; Dikdim, J.M.D.; Bandjoun, N.G.; Caperaa, C.; Dalhatou, S.; Kane, A.; Zeghioud, H.: Synthesis and investigation of TiO2/g–C3N4 performance for photocatalytic degradation of bromophenol blue and eriochrome black T: experimental design optimization and reactive oxygen species contribution. Water 14, 3331 (2022). https://doi.org/10.3390/w14203331

    Article  Google Scholar 

  8. Wang, W.; Liu, Z.; Wang, R.; Cao, M.; Chen, Y.; Lu, X.; Ma, H.; Yue, T.; Yan, T.: A novel strategy for efficient removal of hazardous metal ions based on thermoresponsive phase separation of the PNIPAM/GO system. Chem. Eng. J. 470, 143967 (2023). https://doi.org/10.1016/j.cej.2023.143967

    Article  Google Scholar 

  9. Singh, A.; Pal, D.B.; Mohammad, A.; Alhazmi, A.; Haque, S.; Yoon, T.; Srivastava, N.; Gupta, V.K.: Biological remediation technologies for dyes and heavy metals in wastewater treatment: new insight. Biores. Technol. 343, 126154 (2022). https://doi.org/10.1016/j.biortech.2021.126154

    Article  Google Scholar 

  10. Li, N.; Lu, X.; He, M.; Duan, X.; Yan, B.; Chen, G.; Wang, S.: Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: a review. J. Hazard. Mater. 414, 125478 (2021). https://doi.org/10.1016/j.jhazmat.2021.125478

    Article  Google Scholar 

  11. Far, H.S.; Hasanzadeh, M.; Najafi, M.; Rabbani, M.: Magnetic metal–organic framework (Fe3O4@MIL-101) functionalized with Dendrimer: Highly efficient and selective adsorption removal of organic dyes. J. Inorg. Organomet. Polym. 32, 3848–3863 (2022). https://doi.org/10.1007/s10904-022-02398-7

    Article  Google Scholar 

  12. Lee, D.-E.; Kim, M.-K.; Danish, M.; Jo, W.-K.: State-of-the-art review on photocatalysis for efficient wastewater treatment: attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation. Catal. Commun. 183, 106764 (2023). https://doi.org/10.1016/j.catcom.2023.106764

    Article  Google Scholar 

  13. Samarasinghe, L.V.; Muthukumaran, S.; Baskaran, K.: Recent advances in visible light-activated photocatalysts for degradation of dyes: a comprehensive review. Chemosphere 349, 140818 (2024). https://doi.org/10.1016/j.chemosphere.2023.140818

    Article  Google Scholar 

  14. Lu, J.; Zhou, Y.; Zhou, Y.: Recent advance in enhanced adsorption of ionic dyes from aqueous solution: a review. Crit. Rev. Environ. Sci. Technol. 53, 1709–1730 (2023). https://doi.org/10.1080/10643389.2023.2200714

    Article  Google Scholar 

  15. Wang, T.; Dissanayake, P.D.; Sun, M.; Tao, Z.; Han, W.; An, N.; Gu, Q.; Xia, D.; Tian, B.; Ok, Y.S.; Shang, J.: Adsorption and visible-light photocatalytic degradation of organic pollutants by functionalized biochar: role of iodine doping and reactive species. Environ. Res. 197, 111026 (2021). https://doi.org/10.1016/j.envres.2021.111026

    Article  Google Scholar 

  16. Feng, J.; Ran, X.; Wang, L.; Xiao, B.; Lei, L.; Zhu, J.; Liu, Z.; Xi, X.; Feng, G.; Dai, Z.; Li, R.: The synergistic effect of adsorption-photocatalysis for removal of organic pollutants on mesoporous Cu2V2O7/Cu3V2O8/g–C3N4 heterojunction. Int. J. Mol. Sci. 23, 14264 (2022). https://doi.org/10.3390/ijms232214264

    Article  Google Scholar 

  17. Jimenez-Relinque, E.; Lee, S.F.; Plaza, L.; Castellote, M.: Synergetic adsorption–photocatalysis process for water treatment using TiO2 supported on waste stainless steel slag. Environ. Sci. Pollut. Res. 29, 39712–39722 (2022). https://doi.org/10.1007/s11356-022-18728-8

    Article  Google Scholar 

  18. Liu, W.; He, T.; Wang, Y.; Ning, G.; Xu, Z.; Chen, X.; Hu, X.; Wu, Y.; Zhao, Y.: Synergistic adsorption photocatalytic degradation effect and norfoxacin mechanism of ZnO/ZnS@BC under UV light irradiation. Sci. Rep. 10, 11903 (2020). https://doi.org/10.1038/s41598-020-68517-x

    Article  Google Scholar 

  19. Duran, F.; Diaz-Uribe, C.; Vallejo, W.; Muñoz-Acevedo, A.; Schott, E.; Zarate, X.: Adsorption and photocatalytic degradation of methylene blue on TiO2 thin films impregnated with Enderson-Evans Al-Polyoxometalates: experimental and DFT study. ACS Omega 8, 27284–27292 (2023). https://doi.org/10.1021/acsomega.3c02657

    Article  Google Scholar 

  20. Saadi, H.; Benzarti, R.Z.; Sanguino, P.; Guermazi, S.; Khirouni, K.; Vieira, M.T.: Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J. Mater. Sci.: Mater. Electron. 32, 1536–1556 (2021). https://doi.org/10.1007/s10854-020-04923-1

    Article  Google Scholar 

  21. Saadi, H.; Benzarti, Z.; Sanguino, P.; Pina, J.; Abdelmoula, N.; de Melo, J.S.S.: Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications. J. Mater. Sci. Mater. Electron. 34, 116 (2023). https://doi.org/10.1007/s10854-022-09470-5

    Article  Google Scholar 

  22. Kant, R.; Singh, R.; Bansal, A.; Kumar, A.: Effect of Mn-adding on microstructure, optical and dielectric properties Zn0.95Al0.05O nanoparticles. Physica E: Low-Dimen. Syst. Nanostruct. 131, 114726 (2021). https://doi.org/10.1016/j.physe.2021.114726

    Article  Google Scholar 

  23. Wang, L.; Liu, X.; Zhang, M.; Bi, X.; Ma, Z.; Li, J.; Chen, J.; Sun, X.: Colossal dielectric behavior of (Nb, Ga) co-doped TiO2 single crystal. J. Alloy. Compd. 921, 166053 (2022). https://doi.org/10.1016/j.jallcom.2022.166053

    Article  Google Scholar 

  24. Huang, D.; Li, W.L.; Liu, Z.F.; Li, Y.X.; Ton-That, C.; Cheng, J.; Choy, W.C.H.; Ling, F.C.C.: Electron-pinned defect dipoles in (Li, Al) co-doped ZnO ceramics with colossal dielectric permittivity. J. Mater. Chem. A 8, 4764–4774 (2020). https://doi.org/10.1039/C9TA12808E

    Article  Google Scholar 

  25. Rani, R.; Coutinho, S.D.S.; Holé, S.; Leridon, B.: Colossal dielectric constant in K2Ti2O5. Mater. Lett. 258, 126784 (2020). https://doi.org/10.1016/j.matlet.2019.126784

    Article  Google Scholar 

  26. Velempini, T.; Prabakaran, E.; Pillay, K.: Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—a review. Mater. Today Chem. 19, 100380 (2021). https://doi.org/10.1016/j.mtchem.2020.100380

    Article  Google Scholar 

  27. Boonlakhorn, J.; Khongpakdee, S.; Mani, M.; Khongrattana, P.; Moontragoon, P.; Thongbai, P.; Srepusharawoot, P.: Colossal dielectric properties of Li- and Sm- based perovskite ceramics: a combination of first-principles calculations and experiments. Results Phys. 43, 106086 (2022). https://doi.org/10.1016/j.rinp.2022.106086

    Article  Google Scholar 

  28. Krishnan, A.; Swarnalal, A.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S.M.A.: A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J. Environ. Sci. 139, 389–417 (2024). https://doi.org/10.1016/j.jes.2023.02.051

    Article  Google Scholar 

  29. Zaki, R.S.R.M.; Jusoh, R.; Chanakaewsomboon, I.; Setiabudi, H.D.: Recent advances in metal oxide photocatalysts for photocatalytic degradation of organic pollutants: a review on photocatalysts modification strategies. Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.07.102

    Article  Google Scholar 

  30. Dong, W.; Tian, F.; Ma, Q.; Jiang, D.; Seddon, S.D.; Brunier, A.E.; Xia, Z.; Bakhtiar, S.U.H.; Miao, L.; Fu, Q.: High-performance colossal permittivity behaviour persists to ultralow temperature in Co+Ta co-doped SnO2: A spin-defect mediated superstable large electronic moment of defect-dipole. Acta Mater. 213, 116965 (2021). https://doi.org/10.1016/j.actamat.2021.116965

    Article  Google Scholar 

  31. Tse, M.Y.; Wei, X.; Wong, C.M.; Huang, L.B.; Lam, K.; Dai, J.; Hao, J.: Enhanced dielectric properties of colossal permittivity co-doped TiO2/polymer composite films. RSC Adv. 8, 32972–32978 (2018). https://doi.org/10.1039/C8RA07401A

    Article  Google Scholar 

  32. Fan, J.; He, G.; Cao, Z.; Cao, Y.; Long, Z.; Hu, Z.: Thermal stable and ultralow dielectric loss in (Gd0.5Ta0.5)xTi1−xO2 giant permittivity ceramics by defect engineering. J. Materiomics 9, 157–165 (2023). https://doi.org/10.1016/j.jmat.2022.08.005

    Article  Google Scholar 

  33. Samanta, P.K.; Bandyopadhyay, A.K.: Chemical growth of hexagonal zinc oxide nanorods and their optical properties. Appl. Nanosci. 2, 111–117 (2012). https://doi.org/10.1007/s13204-011-0038-8

    Article  Google Scholar 

  34. Monis, M.P.; Abdel-Hakeem, A.M.; Hadia, N.M.; Saadallah, H.A.A.; Ibrahim, E.M.M.: AC and DC electrical properties of CuO nanoparticles synthesized using free surfactant hydrothermal method. Sohag J. Sci. 7, 95–101 (2022). https://doi.org/10.21608/SJSCI.2022.148799.1010

    Article  Google Scholar 

  35. Djebian, R.; Boudjema, B.; Kabir, A.; Sedrati, C.: Physical characterization of CuO thin films obtained by thermal oxidation of vacuum evaporated Cu. Solid State Sci. 101, 106147 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106147

    Article  Google Scholar 

  36. Lv, Y.; Liu, J.; Zhang, Z.; Zhang, W.; Wang, A.; Tian, F.: Two-step liquid phase synthesis of ZnO@CuO core–shell heterojunction nanorods arrays composites photodetectors with the enhanced UV photoelectric performances. Opt. Laser Technol. 168, 109958 (2024). https://doi.org/10.1016/j.solidstatesciences.2020.106147

    Article  Google Scholar 

  37. Musa, A.M.M.; Rasadujjaman, M.; Gafur, M.A.; Jamil, A.T.M.K.: Synthesis and characterization of dip-coated ZnO–CuO composite thin film for room-temperature CO2 gas sensing. Thin Solid Films 773, 139838 (2023). https://doi.org/10.1016/j.tsf.2023.139838

    Article  Google Scholar 

  38. Yakout, S.M.; El-Sayed, A.M.: Enhanced ferromagnetic and photocatalytic properties in Mn or Fe doped p-CuO/n-ZnO nanocomposites. Adv. Powder Technol. 30, 2841–2850 (2019). https://doi.org/10.1016/j.apt.2019.08.033

    Article  Google Scholar 

  39. Mubeen, K.; Irshad, A.; Safeen, A.; Aziz, U.; Safeen, K.; Ghani, T.; Khan, K.; Ali, Z.; Ul Haq, I.; Shah, A.: Band structure tuning of ZnO/CuO composites for enhanced photocatalytic activity. J. Saudi Chem. Soc. 27, 101639 (2023). https://doi.org/10.1016/j.jscs.2023.101639

    Article  Google Scholar 

  40. Poloju, M.; Jayababu, N.; Reddy, M.V.R.: Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng., B 227, 61–67 (2018). https://doi.org/10.1016/j.mseb.2017.10.012

    Article  Google Scholar 

  41. Şahin, B.; Acar, A.; Kaya, T.: Simple and low-cost synthesis of Al-doped ZnO/CuO composite nanowires for highly efficient hydration level sensing. Ceram. Int. 47, 11405–11414 (2021). https://doi.org/10.1016/j.ceramint.2020.12.267

    Article  Google Scholar 

  42. Widiarti, N.; Sae, J.K.; Wahyuni, S.: Synthesis CuO–ZnO nanocomposite and its application as an antibacterial agent. IOP Conf. Ser. Mater. Sci. Eng. 172, 012036 (2020). https://doi.org/10.1088/1757-899X/172/1/012036

    Article  Google Scholar 

  43. Kushwaha, P.; Chauhan, P.: Microstructural evaluation of iron oxide nanoparticles at different calcination temperature by Scherrer, Williamson-Hall, Size-Strain Plot and Halder–Wagner methods. Phase Transitions 94, 731–753 (2021). https://doi.org/10.1080/01411594.2021.1969396

    Article  Google Scholar 

  44. Moriomoto, T.; Oka, R.; Minagawa, K.; Masui, T.: Novel near-infrared reflective black inorganic pigment based on cerium vanadate. RSC Adv. 12, 16570–16575 (2022). https://doi.org/10.1039/D2RA02483G

    Article  Google Scholar 

  45. Patel, M.; Chavda, A.; Mukhopadhyay, I.; Kim, J.; Ray, A.: Nanostructured SnS with inherent anisotropic optical properties for high photoactivity. Nanoscale 8, 2293–2303 (2016). https://doi.org/10.1039/C5NR06731F

    Article  Google Scholar 

  46. Arfan, M.; Siddiqui, D.N.; Shahid, T.; Iqbal, Z.; Majeed, Y.; Akram, I.; Noreen, B.R.; Song, Z.; Zeb, A.: Tailoring of nanostructures: Al doped CuO synthesized by composite-hydroxide-mediated approach. Results Phys. 13, 102187 (2019). https://doi.org/10.1016/j.rinp.2019.102187

    Article  Google Scholar 

  47. Islam, M.R.; Obaid, J.E.; Saiduzzaman, M.; Nishat, S.S.; Debnath, T.; Kabir, A.: Effect of Al doping on the structural and optical properties of CuO nanoparticles prepared by solution combustion method: experiment and DFT investigation. J. Phys. Chem. Solids 147, 109646 (2020). https://doi.org/10.1016/j.jpcs.2020.109646

    Article  Google Scholar 

  48. Jiang, G.; Wei, Z.; Chen, H.; Du, X.; Li, L.; Liu, Y.; Huang, Q.; Chen, W.: Preparation of novel carbon nanofibers with BiOBr and AgBr decoration for the photocatalytic degradation of rhodamine B. RSC Adv. 5, 30433–30437 (2015). https://doi.org/10.1039/C4RA17290F

    Article  Google Scholar 

  49. Alsulmi, A.; Mohammed, N.N.; Soltan, A.; Abdel Messih, M.F.; Ahmed, M.A.: Engineering S-scheme CuO/ZnO heterojunctions sonochemically for eradicating RhB dye from wastewater under solar radiation. RSC Adv. 13, 13269–13281 (2023). https://doi.org/10.1039/D3RA00924F

    Article  Google Scholar 

  50. Hitkari, G.; Chowdhary, P.; Kumar, V.; Singh, S.; Motghare, A.: Potential of copper–zinc oxide nanocomposite for photocatalytic degradation of Congo red dye. Cleaner Chem. Eng. 1, 100003 (2022). https://doi.org/10.1016/j.clce.2022.100003

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Faisal University for the logistic support of this work.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

This study was completely prepared by Dr. Ghayah M Alsulaim.

Corresponding author

Correspondence to Ghayah M. Alsulaim.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interests.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Ethical Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsulaim, G.M. Giant Dielectric Constant and Fast Adsorption–Sunlight Photocatalytic Properties of Al-Doped CuO–ZnO Heterostructures. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08939-1

Keywords

Navigation