Skip to main content
Log in

Influence of Enzyme Induced Carbonate Precipitation (EICP) on the Engineering Characteristics of Expansive soil

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Enzyme induced carbonate precipitation (EICP) is a new bio-cementation technique that utilizes plant-sourced urease to catalyze urea degradation and reaction with calcium iron, resulting in the formation of calcium carbonate (CaCO3) for soil improvement. EICP has considerable promise for novel and sustainable engineering applications such as soil strengthening, pollutant remediation, and other in situ field applications. In this study, the effect of EICP on the geotechnical characteristics of expansive soil is examined. A series of laboratory tests have been performed with an optimal concentration ratio of 0.75 mol/L. The outcomes of the compaction experiment indicated a slight increment in the dry density of the expansive soil from 15.78 to 16.71 kN/m3.Further, it diminished the optimal moisture content of the soil, decreasing it from 22.3 to 18.5%. The utilization of EICP improves the soil mechanical characteristics, reducing swelling pressure by 80% and increasing the UCS, cohesion, friction angle, unsoaked and soaked CBR by 66%, 44%, 49%, 441%, and 430%, approximately. Additionally, it leads to a significant decrease in soil permeability, approximately 63%. Moreover, SEM and XRD analysis confirmed the presence of CaCO3 content in the treated soil. The experimental findings indicated that the EICP method holds promise in enhancing expansive soil within engineering projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Huang, Q.; Azam, S.: Determination of volumetric changes in cracked expansive clays. Innov. Infrastruct. Solut. 5(3), 104 (2020). https://doi.org/10.1007/s41062-020-00358-z

    Article  Google Scholar 

  2. Aziz, M.; Hamza, M.; Rasool, A.M.; Ali, U.; Ahmed, T.; Kharal, Z.N.; Khan, A.H.; Rehman, Z.: Use of graphene oxide nanomaterial to improve mechanical properties of cement-treated silty soil. Arab. J. Sci. Eng. 48(4), 5603–5618 (2023). https://doi.org/10.1007/s13369-022-07530-w

    Article  Google Scholar 

  3. Hamza, M.; Aziz, M.; Xiang, W.; Younis, M.W.; Nie, Z.; Ali, M.; Dilawar, M.; Mohammed, A.; Ali, F.; Ullah, R.; Yasin, M.: Strengthening of high plastic clays by geotextile reinforcement. Arab. J. Geosci. 15(9), 805 (2022). https://doi.org/10.1007/s12517-022-09972-w

    Article  Google Scholar 

  4. Xu, L.; Lu, Y.; Xue, Y.; Song, Y.; Yang, Q.: Physico-mechanical properties of cement-modifiedexpansive soil under freeze-thaw cycles. J. Yangtze River Sci. Res. Inst. 34(4), 87–91 (2017)

    Google Scholar 

  5. Ali, M.; Aziz, M.; Hamza, M.; Madni, M.F.: Engineering properties of expansive soil treated with polypropylene fibers. Geomech. Eng 22(3), 227–236 (2020)

    Google Scholar 

  6. Chen, F.H.; Foundations on expansive soils. Elsevier ; Vol. 12. 2012.

  7. Aziz, M.: Mechanical properties of a high plasticity clay mixed with sand and low-plastic silt. Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.08.012

    Article  Google Scholar 

  8. Behnood, A.: Soil and clay stabilization with calcium- and non-calcium-based additives: a state-of-the-art review of challenges, approaches and techniques. Trans. Geotech. 17, 14–32 (2018). https://doi.org/10.1016/j.trgeo.2018.08.002

    Article  Google Scholar 

  9. Celik, E.; Nalbantoglu, Z.: Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Eng. Geol. 163, 20–25 (2013). https://doi.org/10.1016/j.enggeo.2013.05.016

    Article  Google Scholar 

  10. Silveira, M.V.; Calheiros, A.V.; Casagrande, M.D.T.: Applicability of the expanded polystyrene as a soil improvement tool. J. Mater. Civ. Eng. 30(6), 06018006 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.000227

    Article  Google Scholar 

  11. Amiri, M.; Sanjari, M.; Porhonar, F.: Microstructural evaluation of the cement stabilization of hematite-rich red soil. Case Stud. Construct. Mater. 16, e00935 (2022). https://doi.org/10.1016/j.cscm.2022.e00935

    Article  Google Scholar 

  12. Soltani, A.; Taheri, A.; Deng, A.; O’Kelly, B.C.: Stabilization of a highly expansive soil using waste-tire-derived aggregates and lime treatment. Case Stud. Construct. Mater. 16, e01133 (2022). https://doi.org/10.1016/j.cscm.2022.e01133

    Article  Google Scholar 

  13. Dharini, V.; Balamaheswari, M.; Presentia, A.N.: Enhancing the strength of expansive clayey soil using lime as soil stabilizing agent along with sodium silicate as grouting chemical. Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.05.156

    Article  Google Scholar 

  14. Zada, U.; Jamal, A.; Iqbal, M.; Eldin, S.M.; Almoshaogeh, M.; Bekkouche, S.R.; Almuaythir, S.: Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Stud. Construct. Mater. 18, e01985 (2023). https://doi.org/10.1016/j.cscm.2023.e01985

    Article  Google Scholar 

  15. Suresh, R.; Murugaiyan, V.: Influence of chemical admixtures on geotechnical properties of expansive soil. Int. J. Eng. 34(1), 19–25 (2021). https://doi.org/10.5829/IJE.2021.34.01A.03

    Article  Google Scholar 

  16. Aziz, M.; Saleem, M.; Irfan, M.: Engineering behaviour of expansive soils treated with rice husk ash [J]. Geomech. Eng. 8(2), 173–186 (2015)

    Article  Google Scholar 

  17. Aziz, M.; Sheikh, F.N.; Qureshi, M.U.; Rasool, A.M.; Irfan, M.: Experimental study on endurance performance of lime and cement-treated cohesive soil. KSCE J. Civ. Eng. 25(9), 3306–3318 (2021). https://doi.org/10.1007/s12205-021-2154-7

    Article  Google Scholar 

  18. Munawar, M.; Khan, A.H.; Rehman, Z.U.; Rahim, A.; Aziz, M.; Almuaythir, S.; Kheir, B.E.; Haider, F.: Micro to nanolevel stabilization of expansive clay using agro-wastes. Adv. Civil Eng. 2023, 2753641 (2023). https://doi.org/10.1155/2023/2753641

    Article  Google Scholar 

  19. Hamza, M.; Nie, Z.; Aziz, M.; Ijaz, N.; Ijaz, Z.; Rehman, Z.: Strengthening potential of xanthan gum biopolymer in stabilizing weak subgrade soil. Clean Technol. Environ. Policy 24(9), 2719–2738 (2022). https://doi.org/10.1007/s10098-022-02347-5

    Article  Google Scholar 

  20. Barman, D.; Dash, S.K.: Stabilization of expansive soils using chemical additives: a review. J. Rock Mech. Geotech. Eng. 14(4), 1319–1342 (2022). https://doi.org/10.1016/j.jrmge.2022.02.011

    Article  Google Scholar 

  21. Wu, Y.; Qiao, X.; Yu, X.; Yu, J.; Deng, Y.: Study on properties of expansive soil improved by steel slag powder and cement under freeze-thaw cycles. KSCE J. Civ. Eng. 25(2), 417–428 (2021). https://doi.org/10.1007/s12205-020-0341-6

    Article  Google Scholar 

  22. Su, H.; Xiao, H.; Li, Z.; Tian, X.; Luo, S.; Yu, X.; Ouyang, Q.: Experimental study on microstructure evolution and fractal features of expansive soil improved by MICP method. Frontiers Mater. 9, 842887 (2022). https://doi.org/10.3389/fmats.2022.842887

    Article  Google Scholar 

  23. Aziz, M.; Towhata, I.; Irfan, M.; Strength and deformation characteristics of degradable granular soils.ASTM International, 2016.

  24. Ijaz, N.; Dai, F.; Meng, L.; Rehman, Zu.; Zhang, H.: Integrating lignosulphonate and hydrated lime for the amelioration of expansive soil: a sustainable waste solution. J. Clean. Product. 254, 119985 (2020)

    Article  Google Scholar 

  25. Khan, M.I.; Irfan, M.; Aziz, M.; Khan, A.H.: Geotechnical characteristics of effluent contaminated cohesive soils. J. Environ. Eng. Landsc. Manag. 25(1), 75–82 (2017). https://doi.org/10.3846/16486897.2016.1210155

    Article  Google Scholar 

  26. Shah, S.H.A.; Habib, U.; Mohamed, A.; Aziz, M.; Rehman, Q.; Saleem, A.: Laboratory and in situ stabilization of compacted clay through granite waste powder. Sustainability 14(21), 14459 (2022). https://doi.org/10.3390/su142114459

    Article  Google Scholar 

  27. Hamza, M.; Nie, Z.; Aziz, M.; Ijaz, N.; Fang, C.; Ghani, M.U.; Ijaz, Z.; Noshin, S.; Salman, M.: Geotechnical properties of problematic expansive subgrade stabilized with guar gum biopolymer. Clean Technol. Environ. Policy 25(5), 1699–1719 (2023). https://doi.org/10.1007/s10098-023-02466-7

    Article  Google Scholar 

  28. Hamza, M.; Nie, Z.; Aziz, M.; Ijaz, N.; Ameer, M.F.; Ijaz, Z.: Geotechnical properties of problematic expansive subgrade stabilized with xanthan gum biopolymer. Road Mater. Pavement Design 24(7), 1869–1883 (2023). https://doi.org/10.1080/14680629.2022.2092027

    Article  Google Scholar 

  29. Hamdan, N., Jr.; E.K.: Enzyme-induced carbonate mineral precipitation for fugitive dust control. Géotechnique 66(7), 546–555 (2016). https://doi.org/10.1680/jgeot.15.P.168

    Article  Google Scholar 

  30. Meng, H.; Gao, Y.; He, J.; Qi, Y.; Hang, L.: Microbially induced carbonate precipitation for wind erosion control of desert soil: field-scale tests. Geoderma 383, 114723 (2021). https://doi.org/10.1016/j.geoderma.2020.114723

    Article  Google Scholar 

  31. Putra, H.; Yasuhara, H.; Kinoshita, N.; Neupane, D.; Lu, C.W.: Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique. Biotechnol, Frontiers Bioeng (2016) https://doi.org/10.3389/fbioe.2016.00037

    Book  Google Scholar 

  32. Oliveira, P.J.V.; Freitas, L.D.; Carmona, J.P.S.F.: Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement. J. Mater. Civ. Eng. 29(4), 04016263 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001804

    Article  Google Scholar 

  33. Shu, S.; Yan, B.; Meng, H.; Bian, X.: Comparative study of EICP treatment methods on the mechanical properties of sandy soil. Soils Found. 62(6), 101246 (2022). https://doi.org/10.1016/j.sandf.2022.101246

    Article  Google Scholar 

  34. Martin, K.K.; Tirkolaei, H.K., Jr.; E.K.: Mid-scale biocemented soil columns via enzyme-induced carbonate precipitation (EICP). Soils Found. 61(6), 1529–1542 (2021). https://doi.org/10.1016/j.sandf.2021.09.001

    Article  Google Scholar 

  35. Ghasemi, H.; Hatam-Lee, S.M.; Tirkolaei, H.K.; Yazdani, H.: Biocementation of soils of different surface chemistries via enzyme induced carbonate precipitation (EICP): an integrated laboratory and molecular dynamics study. Biophys. Chem. 284, 106793 (2022). https://doi.org/10.1016/j.bpc.2022.106793

    Article  Google Scholar 

  36. Xu, K.; Huang, M.; Liu, Z.; Cui, M.; Li, S.: Mechanical properties and disintegration behavior of EICP-reinforced sea sand subjected to drying-wetting cycles. Biogeotechnics 1(2), 100019 (2023). https://doi.org/10.1016/j.bgtech.2023.100019

    Article  Google Scholar 

  37. Zhang, J.; Wang, X.J.; Shi, L.; Yin, Y.: Enzyme-induced carbonate precipitation (EICP) combined with lignin to solidify silt in the Yellow River flood area. Constr. Build. Mater. 339, 127792 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127792

    Article  Google Scholar 

  38. Meng, H.; Shu, S.; Gao, Y.; Yan, B.; He, J.: Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement. Eng. Geol. 294, 106374 (2021). https://doi.org/10.1016/j.enggeo.2021.106374

    Article  Google Scholar 

  39. Mo, Y.; Yue, S.; Zhou, Q.; Liu, X.: Improvement and soil consistency of sand-clay mixtures treated with enzymatic-induced carbonate precipitation. Materials 14(18), 5140 (2021). https://doi.org/10.3390/ma14185140

    Article  Google Scholar 

  40. Saif, A.; Cuccurullo, A.; Gallipoli, D.; Perlot, C.; Bruno, A.W.: Advances in enzyme induced carbonate precipitation and application to soil improvement: a review. Materials 15(3), 950 (2022). https://doi.org/10.3390/ma15030950

    Article  Google Scholar 

  41. Ahenkorah, I.; Rahman, M.M.; Karim, M.R.; Beecham, S.: Enzyme induced calcium carbonate precipitation and its engineering application: a systematic review and meta-analysis. Constr. Build. Mater. 308, 125000 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125000

    Article  Google Scholar 

  42. Dilrukshi, R.A.N.; Nakashima, K.; Kawasaki, S.: Soil improvement using plant-derived urease-induced calcium carbonate precipitation. Soils Found. 58(4), 894–910 (2018). https://doi.org/10.1016/j.sandf.2018.04.003

    Article  Google Scholar 

  43. Yasuhara, H.; Neupane, D.; Hayashi, K.; Okamura, M.: Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils Found. 52(3), 539–549 (2012)

    Article  Google Scholar 

  44. Neupane, D.; Yasuhara, H.; Kinoshita, N.; Unno, T.: Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique. J. Geotech. Geoenviron. Eng. 139(12), 2201–2211 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000959

    Article  Google Scholar 

  45. Carmona, J.P.S.F.; Oliveira, P.J.V.; Lemos, L.J.L.; Pedro, A.M.G.: Improvement of a sandy soil by enzymatic calcium carbonate precipitation. Proc. Inst. Civil Eng.-Geotech. Eng. 171(1), 3–15 (2018). https://doi.org/10.1680/jgeen.16.00138

    Article  Google Scholar 

  46. Neupane, D.; Yasuhara, H.; Kinoshita, N.; Putra, H.: Distribution of grout material within 1-m sand column in insitu calcite precipitation technique. Soils Found. 55(6), 1512–1518 (2015). https://doi.org/10.1016/j.sandf.2015.10.015

    Article  Google Scholar 

  47. Almajed, A.; Tirkolaei, H.K.; Kavazanjian, E., Jr.; Hamdan, N.: Enzyme induced biocementated sand with high strength at low carbonate content. Sci. Rep. 9(1), 1135 (2019). https://doi.org/10.1038/s41598-018-38361-1

    Article  Google Scholar 

  48. Oliveira, P.J.V.; Freitas, L.D.; Carmona, J.P.S.F.: Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement. J. Mater. Civil Eng. 29(4), 04016263 (2017)

    Article  Google Scholar 

  49. Almajed, A.; Abbas, H.; Arab, M.; Alsabhan, A.; Hamid, W.; Al-Salloum, Y.: Enzyme-induced carbonate precipitation (EICP)-based methods for ecofriendly stabilization of different types of natural sands. J. Clean. Prod. 274, 122627 (2020). https://doi.org/10.1016/j.jclepro.2020.122627

    Article  Google Scholar 

  50. Miao, L.; Wu, L.; Sun, X.: Enzyme-catalysed mineralisation experiment study to solidify desert sands. Sci. Rep. 10(1), 10611 (2020). https://doi.org/10.1038/s41598-020-67566-6

    Article  Google Scholar 

  51. Ma, G.; He, X.; Jiang, X.; Liu, H.; Chu, J.; Xiao, Y.: Strength and permeability of bentonite-assisted biocemented coarse sand. Can. Geotech. J. 58(7), 969–981 (2021). https://doi.org/10.1139/cgj-2020-0045

    Article  Google Scholar 

  52. Gao, Y.; He, J.; Tang, X.; Chu, J.: Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil. Soils Found. 59(5), 1631–1637 (2019). https://doi.org/10.1016/j.sandf.2019.03.014

    Article  Google Scholar 

  53. Shu, S.; Yan, B.; Ge, B.; Li, S.; Meng, H.: Factors affecting soybean crude urease extraction and biocementation via enzyme-induced carbonate precipitation (EICP) for soil improvement. Energies 15(15), 5566 (2022). https://doi.org/10.3390/en15155566

    Article  Google Scholar 

  54. Zimmer, M.: Molecular mechanics evaluation of the proposed mechanisms for the degradation of urea by urease. J. Biomol. Struct. Dyn. 17(5), 787–797 (2000). https://doi.org/10.1080/07391102.2000.10506568

    Article  Google Scholar 

  55. ASTM: D2487–17: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken,PA, 2017.

  56. ASTM: D7928–17: Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. West Conshohocken, PA, 2017.

  57. AASHTO: T27: Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates. American Association of State Highway and Transportation Officials, Washington, DC. 2014.

  58. ASTM: D698–12: Standard Test Methods for Laboratory Compaction Characteristics of Soil, ASTM International, West Conshohocken, PA, 2012.

  59. ASTM: D854–14: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, 2014.

  60. ASTM: D4546–08: Standard test methods for one-dimensional swell or settlement potential of cohesive soils, ASTM International, West Conshohocken,PA, 2008.

  61. ASTM: D2166–10: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, 2010.

  62. ASTM: D1883–16: Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils, ASTM International, West Conshohocken, PA, 2016.

  63. ASTM: D3080–11: Standard test method for direct shear test of soils under consolidated drained conditions. In: Annual Book of ASTM Standards, Philadelphia, PA, 2011.

  64. ASTM: D5084–16: Standard test methods for measurement of hydraulic conductivity of saturate porous material using a flexible wall permeability, West Conshohocken,PA, 2016.

  65. Zhang, J.; Yin, Y.; Shi, W.; Song, D.; Yu, L.; Shi, L.; Han, Z.: Experimental study on the calcium carbonate production rates and crystal size of EICP under multi-factor coupling. Case Stud. Construct. Mater. 18, e01802 (2023). https://doi.org/10.1016/j.cscm.2022.e01802

    Article  Google Scholar 

  66. Choi, S.G.; Park, S.S.; Wu, S.; Chu, J.: Methods for calcium carbonate content measurement of biocemented soils. J. Mater. Civ. Eng. 29(11), 06017015 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002064

    Article  Google Scholar 

  67. Liu, L.; Gao, Y.; Geng, W.; Song, J.; Zhou, Y.; Li, C.: Comparison of jack bean and soybean crude ureases on surface stabilization of desert sand via enzyme-induced carbonate precipitation. Geoderma 435, 116504 (2023). https://doi.org/10.1016/j.geoderma.2023.116504

    Article  Google Scholar 

  68. Consoli, N.C.; Tonini de Araújo, M.; Tonatto Ferrazzo, S.; De Lima Rodrigues, V.; Gravina da Rocha, C.: Increasing density and cement content in stabilization of expansive soils Conflicting or complementary procedures for reducing swelling. Canadian Geotech. J. 58(6), 866–878 (2021)

    Article  Google Scholar 

  69. Pastor, J.L.; Tomás, R.; Cano, M.; Riquelme, A.; Gutiérrez, E.: Evaluation of the improvement effect of limestone powder waste in the stabilization of swelling clayey soil. Sustainability 11(3), 679 (2019). https://doi.org/10.3390/su11030679

    Article  Google Scholar 

  70. Kong, D.J.; Wu, H.N.; Chai, J.C.; Arulrajah, A.: State-of-the-art review of geosynthetic clay liners. Sustainability 9(11), 2110 (2017). https://doi.org/10.3390/su9112110

    Article  Google Scholar 

  71. Osinubi, K.; Eberemu, A.O.; Gadzama, E.W.; Ijimdiya, T.S.: Plasticity characteristics of lateritic soil treated with Sporosarcina pasteurii in microbial-induced calcite precipitation application. SN Appl. Sci. 1, 1–12 (2019). https://doi.org/10.1007/s42452-019-0868-7

    Article  Google Scholar 

  72. Proto, C.J.; DeJong, J.T.; Nelson, D.C.: Biomediated permeability reduction of saturated sands. J. Geotech. Geoenviron. Eng. 142(12), 04016073 (2016). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001558

    Article  Google Scholar 

  73. Tiwari, N.; Satyam, N.; Sharma, M.: Micro-mechanical performance evaluation of expansive soil biotreated with indigenous bacteria using MICP method. Sci. Rep. 11(1), 10324 (2021)

    Article  Google Scholar 

  74. Ciancio, D.; Beckett, C.T.S.; Carraro, J.A.H.: Optimum lime content identification for lime-stabilised rammed earth. Constr. Build. Mater. 53, 59–65 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.077

    Article  Google Scholar 

  75. Fatahi, B.; Khabbaz, H.; Fatahi, B.: Mechanical characteristics of soft clay treated with fibre and cement. Geosynth. Int. 19(3), 252–262 (2012). https://doi.org/10.1680/gein.12.00012

    Article  Google Scholar 

  76. Chittoori, B.C.S.; Rahman, T.; Burbank, M.: Microbial-facilitated calcium carbonate precipitation as a shallow stabilization alternative for expansive soil treatment. Geotechnics 1(2), 558–572 (2021). https://doi.org/10.3390/geotechnics1020025

    Article  Google Scholar 

  77. Soltani-Jigheh, H.; Ghorbani, M.; Pazhouhandeh, M.; Emami Azadi, M.R.: Bacterial treatment of remoulded fine-grained cohesive soils. Int. J. Civil Eng. 18, 463–473 (2020). https://doi.org/10.1007/s40999-019-00489-0

    Article  Google Scholar 

  78. Etim, R.K.; Ekpo, D.U.; Ebong, U.B.; Usanga, I.N.: Influence of periwinkle shell ash on the strength properties of cement-stabilized lateritic soil. Int. J. Pavement Res. Technol. (2021). https://doi.org/10.1007/s42947-021-00072-8

    Article  Google Scholar 

  79. Li, M.; Fang, C.; Kawasaki, S.; Achal, V.: Fly ash incorporated with biocement to improve strength of expansive soil. Sci. Rep. 8(1), 2565 (2018). https://doi.org/10.1038/s41598-018-20921-0

    Article  Google Scholar 

  80. Dang, L.C.; Khabbaz, H.; Fatahi, B.; An experimental study on engineering behaviour of lime and bagasse fibre reinforced expansive soils. In: ICSMGE 2017–19th International Conference on Soil Mechanics and Geotechnical Engineering.

  81. Kolhe, P.V.; Dhatrak, A.I.: Unconfined compressive strength of bio–enzymatic treated expansive (BC) soil. Mater. Today: Proc. 62, 6809–6813 (2022). https://doi.org/10.1016/j.matpr.2022.04.946

    Article  Google Scholar 

  82. Dang, L.C.; Fatahi, B.; Khabbaz, H.: Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres. Proc. Eng. 143, 658–665 (2016). https://doi.org/10.1016/j.proeng.2016.06.093

    Article  Google Scholar 

  83. Indiramma, P.; Sudharani, C.; Needhidasan, S.: Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment–An experimental study. Mater. Today: Proc. 22, 694–700 (2020). https://doi.org/10.1016/j.matpr.2019.09.147

    Article  Google Scholar 

  84. Abdelkader, H.A.M.; Hussein, M.M.A.; Ye, H.: Influence of waste marble dust on the improvement of expansive clay soils. Adv. Civil Eng. 2021, 3192122 (2021). https://doi.org/10.1155/2021/3192122

    Article  Google Scholar 

  85. Mehmood, M.; Guo, Y.; Liu, Y.; Uge, B.U.: Modification of expansive soil characteristics by employing agro-waste eggshell powder: an experimental study. Iranian J. Sci. Technol., Trans. Civil Eng. (2023). https://doi.org/10.1007/s40996-023-01284-7

    Article  Google Scholar 

  86. Durga Prasad, CH.V.; Saroja Rani, K.; Tanuja, V.; An Experimental Study on Expansive Soil Stabilized with GGBS. International Journal of Management, Technology And Engineering, 2018.

  87. Zha, F.; Qiao, B.; Kang, B.; Xu, L.; Chu, C.; Yang, C.: Engineering properties of expansive soil stabilized by physically amended titanium gypsum. Constr. Build. Mater. 303, 124456 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124456

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the research funding (No.42107196) provided by the National Natural Science Foundation of China in support of this project. Also, the authors are thankful to the anonymous reviewers whose comments were valuable and have significantly contributed to this paper.

Funding

The Funding was provided by Innovative Research Group Project of the National Natural Science Foundation of China, 42107196, Yunlong Liu

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuancheng Guo or Lei Wang.

Ethics declarations

Conflict of interest

All authors have reviewed and endorsed this version of the article. The manuscript is not under consideration for publication elsewhere, and it has not been previously published.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, M., Guo, Y., Wang, L. et al. Influence of Enzyme Induced Carbonate Precipitation (EICP) on the Engineering Characteristics of Expansive soil. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08896-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08896-9

Keywords

Navigation