Skip to main content
Log in

Application of Fatty Acid Methyl Ester from Biomass for CO2-Crude Oil MMP Reduction

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) flooding is a widely adopted enhanced oil recovery (EOR) technique known for its ability to displace crude oil effectively by altering its properties. However, in high-temperature Malaysian reservoirs, achieving the minimum miscibility pressure (MMP) for successful miscible flooding can be challenging. This study investigates the potential of using fatty acid methyl esters (FAMEs) derived from biomass sources to lower the MMP in CO2-crude oil systems, thereby enhancing CO2-EOR performance. FAME, renewable and sustainable, presents an innovative alternative to conventional petroleum-based chemicals in EOR. The study involved two types of biomass-derived FAME, sourced from Rubber Seed Oil and Palm Kernel Oil, and two types of crude oil, Tapis and Dulang, tested using the slim tube method at 90 °C and pressures up to 4500 psi. Our findings indicate the presence of Methyl Oleate in Rubber Seed Oil and Methyl Laurate in Palm Kernel Oil, both likely derivatives formed during biodiesel production through transesterification. The MMP for Tapis crude oil was 3620 psi, and for Dulang crude oil, it was 3860 psi, exceeding both the reservoir and fracture pressures of the formation. This can lead to inefficient CO2 injection, reservoir fracturing, and increased costs. However, the addition of 5% vol. FAME to Tapis crude oil demonstrated promise, with Methyl Laurate reducing the MMP by 17.12% and Methyl Oleate by 3.34%. Increasing the concentration of Methyl Laurate to 10% vol. resulted in a substantial 21% MMP reduction. Notably, the presence of waxes and asphaltenes further lowered the MMP compared to pure Tapis crude oil, with Methyl Laurate achieving a 6.42% reduction compared to 17% for Methyl Oleate. In conclusion, this study explores the use of biomass-derived FAME to improve CO2 flooding performance by lowering MMP. The findings suggest that FAME, particularly Methyl Laurate, offers a sustainable solution to address MMP challenges in CO2-based EOR operations, contributing to the advancement of the oil industry in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Alonso-Fariñas, B.; Vilches Arenas, L.F.; Navarrete, B.: Carbon capture and utilization technologies: a literature review and recent advances. Energy Sour. Part A Recov. Util. Environ. Eff. 41(12), 1403–1433 (2019)

    Article  Google Scholar 

  2. Godin, J.; Liu, W.; Ren, S.; Xu, C.C.: Advances in recovery and utilization of carbon dioxide: a brief review. J. Environ. Chem. Eng. 9(4), 105644 (2021)

    Article  Google Scholar 

  3. Krevor, S.; De Coninck, H.; Gasda, S.E.; Ghaleigh, N.S.; de Gooyert, V.; Hajibeygi, H.; Juanes, R.; Neufeld, J.; Roberts, J.J.; Swennenhuis, F.: Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nat. Rev. Earth Environ.. 4(2), 102–118 (2023)

    Article  Google Scholar 

  4. Magzymov, D., Dindoruk, B., Johns, R. T.: Carbon capture, utilization, and storage in the context of petroleum industry: a state-of-the-art review. In: SPE improved oil recovery conference? (2022)

  5. Abdelaziz Nasr, E.-H.; Saad, D.: CO2 miscible flooding for enhanced oil recovery. In: Ramesh, K.A. (Ed.) Carbon Capture Utilization and Sequestration, p. 5. IntechOpen, London (2018). https://doi.org/10.5772/intechopen.79082

    Chapter  Google Scholar 

  6. Kolster, C.; Masnadi, M.S.; Krevor, S.; Mac Dowell, N.; Brandt, A.R.: CO 2 enhanced oil recovery: a catalyst for gigatonne-scale carbon capture and storage deployment? Energy Environ. Sci. 10(12), 2594–2608 (2017)

    Article  Google Scholar 

  7. Mahdaviara, M.; Amar, M.N.; Hemmati-Sarapardeh, A.; Dai, Z.; Zhang, C.; Xiao, T.; Zhang, X.: Toward smart schemes for modeling CO2 solubility in crude oil: application to carbon dioxide enhanced oil recovery. Fuel 285, 119147 (2021)

    Article  Google Scholar 

  8. Verma, M. K.: Fundamentals of carbon dioxide-enhanced oil recovery (CO2-EOR): a supporting document of the assessment methodology for hydrocarbon recovery using CO2-EOR associated with carbon sequestration pp 2331–1258 (2015).

  9. Afzali, S.; Ghamartale, A.; Rezaei, N.; Zendehboudi, S.: Mathematical modeling and simulation of water-alternating-gas (WAG) process by incorporating capillary pressure and hysteresis effects. Fuel 263, 116362 (2020)

    Article  Google Scholar 

  10. Lashgari, H.R.; Sun, A.; Zhang, T.; Pope, G.A.; Lake, L.W.: Evaluation of carbon dioxide storage and miscible gas EOR in shale oil reservoirs. Fuel 241, 1223–1235 (2019)

    Article  Google Scholar 

  11. Kumar, N.; Sampaio, M.A.; Ojha, K.; Hoteit, H.; Mandal, A.: Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: a review. Fuel 330, 125633 (2022)

    Article  Google Scholar 

  12. Mohagheghian, E.: An application of evolutionary algorithms for WAG optimisation in the Norne Field. Memorial University of Newfoundland (2016)

  13. Elwegaa, K.; Emadi, H.; Soliman, M.; Gamadi, T.; Elsharafi, M.: Improving oil recovery from shale oil reservoirs using cyclic cold carbon dioxide injection–An experimental study. Fuel 254, 115586 (2019)

    Article  Google Scholar 

  14. Hamdi, Z., Awang, M., & Zamani, A.: Evaluating liquid CO2 injection technique for oil recovery using core flood experiments. In: SPE international heavy oil conference and exhibition (2016)

  15. Golkari, A.; Riazi, M.: Experimental investigation of miscibility conditions of dead and live asphaltenic crude oil–CO2 systems. J. Pet. Explor. Prod. Technol. 7, 597–609 (2017)

    Article  Google Scholar 

  16. Mutailipu, M.; Jiang, L.; Liu, X.; Liu, Y.; Zhao, J.: CO2 and alkane minimum miscible pressure estimation by the extrapolation of interfacial tension. Fluid Phase Equilib. 494, 103–114 (2019)

    Article  Google Scholar 

  17. Haghighi, O.M.; Zargar, G.; Khaksar Manshad, A.; Ali, M.; Takassi, M.A.; Ali, J.A.; Keshavarz, A.: Effect of environment-friendly non-ionic surfactant on interfacial tension reduction and wettability alteration; implications for enhanced oil recovery. Energies 13(15), 3988 (2020)

    Article  Google Scholar 

  18. Luo, H.; Zhang, Y.; Fan, W.; Nan, G.; Li, Z.: Effects of the non-ionic surfactant (C i PO j) on the interfacial tension behavior between CO2 and crude oil. Energy Fuels 32(6), 6708–6712 (2018)

    Article  Google Scholar 

  19. Phukan, R.; Gogoi, S.B.; Tiwari, P.: Effects of CO2-foam stability, interfacial tension and surfactant adsorption on oil recovery by alkaline-surfactant-alternated-gas/CO2 flooding. Colloids Surf. A 597, 124799 (2020)

    Article  Google Scholar 

  20. Yang, Y.; Li, X.; Guo, P.; Zhuo, Y.; Sha, Y.: Improving oil recovery in the CO2 flooding process by utilizing nonpolar chemical modifiers. Chin. J. Chem. Eng. 24(5), 646–650 (2016)

    Article  Google Scholar 

  21. Salari Sardari, F.; Khorsand Movaghar, M.: A simulation approach to achieve the best miscible enrichment in gas flooding and chemical injection process for enhanced oil recovery. Asia-Pac. J. Chem. Eng. 12(2), 230–246 (2017)

    Article  Google Scholar 

  22. Zhang, P., Huang, S., Sayegh, S., & Zhou, X.: Effect of CO2 impurities on gas-injection EOR processes. In: SPE Improved Oil Recovery Conference? (2004)

  23. Hamdi, Z., Awang, M., Bataee, M., & Vatanparast, M.: Proposing low temperature CO2 for enhancing miscibility in high temperature reservoirs. In: SPE reservoir characterisation and simulation conference and exhibition (2017).

  24. Liu, J.; Sun, L.; Li, Z.; Wu, X.: Experimental study on reducing CO2–oil minimum miscibility pressure with hydrocarbon agents. Energies 12(10), 1975 (2019)

    Article  Google Scholar 

  25. Almobarak, M.; Wu, Z.; Zhou, D.; Fan, K.; Liu, Y.; Xie, Q.: A review of chemical-assisted minimum miscibility pressure reduction in CO2 injection for enhanced oil recovery. Petroleum 7(3), 245–253 (2021). https://doi.org/10.1016/j.petlm.2021.01.001

    Article  Google Scholar 

  26. Choubineh, A.; Helalizadeh, A.; Wood, D.A.: The impacts of gas impurities on the minimum miscibility pressure of injected CO2-rich gas–crude oil systems and enhanced oil recovery potential. Pet. Sci. 16(1), 117–126 (2019). https://doi.org/10.1007/s12182-018-0256-8

    Article  Google Scholar 

  27. Rommerskirchen, R., Nijssen, P., Bilgili, H., Sottmann, T.: Reducing the Miscibility Pressure in Gas Injection Oil Recovery Processes. In: Abu Dhabi international petroleum exhibition & conference (2016).

  28. Guo, P.; Hu, Y.; Qin, J.; Li, S.; Jiao, S.; Chen, F.; He, J.: Use of oil-soluble surfactant to reduce minimum miscibility pressure. Pet. Sci. Technol. 35(4), 345–350 (2017)

    Article  Google Scholar 

  29. Avvaru, B.; Venkateswaran, N.; Uppara, P.; Iyengar, S.B.; Katti, S.S.: Current knowledge and potential applications of cavitation technologies for the petroleum industry. Ultrason. Sonochem. 42, 493–507 (2018)

    Article  Google Scholar 

  30. Mariyate, J.; Bera, A.: Paradigm shift towards the sustainability in upstream oil industry for enhanced recovery-A state-of-art review. J. Clean. Prod. 386, 135784 (2022)

    Article  Google Scholar 

  31. Wang, L.; Tian, Y.; Yu, X.; Wang, C.; Yao, B.; Wang, S.; Winterfeld, P.H.; Wang, X.; Yang, Z.; Wang, Y.: Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. Fuel 210, 425–445 (2017)

    Article  Google Scholar 

  32. Al-Ghamdi, A.; Haq, B.; Al-Shehri, D.; Muhammed, N.S.; Mahmoud, M.: Surfactant formulation for green enhanced oil recovery. Energy Rep. 8, 7800–7813 (2022). https://doi.org/10.1016/j.egyr.2022.05.293

    Article  Google Scholar 

  33. Alkan, H.; Mukherjee, S.; Kögler, F.: Reservoir engineering of in-situ MEOR; impact of microbial community. J. Petrol. Sci. Eng. 195, 107928 (2020)

    Article  Google Scholar 

  34. García-Becerra, F. Y., Allen, D. G., & Acosta, E. J.. Surfactants from waste biomass. In: Surfactants from renewable resources pp. 167–189, (2010). https://doi.org/10.1002/9780470686607.ch9

  35. Haq, B.: The role of microbial products in green enhanced oil recovery: Acetone and butanone. Polymers 13(12), 1946 (2021)

    Article  Google Scholar 

  36. Babu, K.; Pal, N.; Bera, A.; Saxena, V.K.; Mandal, A.: Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery. Appl. Surface Sci. 353, 1126–1136 (2015). https://doi.org/10.1016/j.apsusc.2015.06.196

    Article  Google Scholar 

  37. Holmberg, K.: Natural surfactants. Curr. Opin. Colloid Interface Sci. 6(2), 148–159 (2001). https://doi.org/10.1016/S1359-0294(01)00074-7

    Article  Google Scholar 

  38. Johansson, I.; Svensson, M.: Surfactants based on fatty acids and other natural hydrophobes. Curr. Opin. Colloid Interface Sci. 6(2), 178–188 (2001). https://doi.org/10.1016/S1359-0294(01)00076-0

    Article  Google Scholar 

  39. Saxena, N.; Pal, N.; Dey, S.; Mandal, A.: Characterizations of surfactant synthesized from palm oil and its application in enhanced oil recovery. J. Taiwan Inst. Chem. Eng. 81, 343–355 (2017). https://doi.org/10.1016/j.jtice.2017.09.014

    Article  Google Scholar 

  40. Yusoff, M.F.M.; Xu, X.; Guo, Z.: Comparison of fatty acid methyl and ethyl esters as biodiesel base stock: a review on processing and production requirements. J. Am. Oil. Chem. Soc. 91(4), 525–531 (2014). https://doi.org/10.1007/s11746-014-2443-0

    Article  Google Scholar 

  41. Atta, D.Y.; Negash, B.M.; Yekeen, N.; Habte, A.D.: A state-of-the-art review on the application of natural surfactants in enhanced oil recovery. J. Mol. Liquids 321, 114888 (2021). https://doi.org/10.1016/j.molliq.2020.114888

    Article  Google Scholar 

  42. Li, H.; Niu, S.-L.; Lu, C.-M.; Cheng, S.-Q.: Comparative evaluation of thermal degradation for biodiesels derived from various feedstocks through transesterification. Energy Convers. Manage. 98, 81–88 (2015)

    Article  Google Scholar 

  43. Yaqoob, A.A.; Sekeri, S.H.; Othman, M.B.H.; Ibrahim, M.N.M.; Feizi, Z.H.: Thermal degradation and kinetics stability studies of oil palm (Elaeis Guineensis) biomass-derived lignin nanoparticle and its application as an emulsifying agent. Arab. J. Chem. 14(6), 103182 (2021). https://doi.org/10.1016/j.arabjc.2021.103182

    Article  Google Scholar 

  44. Elraies, K.A.; Tan, I.M.; Fathaddin, M.T.; Abo-Jabal, A.: Development of a new polymeric surfactant for chemical enhanced oil recovery. Pet. Sci. Technol. 29(14), 1521–1528 (2011). https://doi.org/10.1080/10916460903581427

    Article  Google Scholar 

  45. Yan, X.; Zhai, Z.; Song, Z.; Shang, S.; Rao, X.: Synthesis and properties of polyester-based polymeric surfactants from diterpenic rosin. Ind. Crops Prod. 108, 371–378 (2017). https://doi.org/10.1016/j.indcrop.2017.06.060

    Article  Google Scholar 

  46. Saira Janna, F.; Le-Hussain, F.: Effectiveness of modified CO2 injection at improving oil recovery and CO2 storage—review and simulations. Energy Rep. 6, 1922–1941 (2020). https://doi.org/10.1016/j.egyr.2020.07.008

    Article  Google Scholar 

  47. Becker, J.R.: Crude oil waxes, emulsions, and asphaltenes. Pennwell Books, Tulsa, OK (1997)

    Google Scholar 

  48. Yao, B.; Li, C.; Yang, F.; Sun, G.; Xia, X.; Ashmawy, A.M.; Zeng, H.: Advances in and perspectives on strategies for improving the flowability of waxy oils. Energy Fuels 36(15), 7987–8025 (2022)

    Article  Google Scholar 

  49. Zougari, M.I.: Shear driven crude oil wax deposition evaluation. J. Petrol. Sci. Eng. 70(1–2), 28–34 (2010). https://doi.org/10.1016/j.petrol.2009.01.011

    Article  Google Scholar 

  50. Holm, L.W.: Evolution of the carbon dioxide flooding processes. J. Pet. Technol. 39, 1337–1342 (1987)

    Article  Google Scholar 

  51. Holm, L.W.; Josendal, V.A.: Effect of oil composition on miscible-type displacement by carbon dioxide. Soc. Pet. Eng. 22, 87–98 (1982)

    Article  Google Scholar 

  52. Hussain, A., Egbogah, E. O., Hovdestad, W. R.: Reservoir management of the dulang oil field, offshore peninsular malaysia: the heuristic approach. In: European Petroleum Conference . (1992)

  53. Selamat, S., Samsuddin, S. A., & Halim, N. A.: Evaluation and optimization of enhanced oil recovery by WAG injection at tapis and guntong fields, Malaysia. In: SPE enhanced oil recovery conference (2011)

  54. Sonrexa, K., Aziz, A., Solomon, G. J., Bandai, M., Embong, M. K., & Wahir, H.: Role of reservoir simulation in development and management of complexly—faulted, multiple—reservoir dulang field, offshore Malaysia : Holistic Strategies. Middle East Oil Show (1995)

  55. Yazmyradova, G.; Hassan, N.N.A.A.N.M.; Salleh, N.F.; Hermana, M.; Soleimani, H.: Reservoir characterisation of high-pressure, high-temperature zone of malay basin using seismic inversion and artificial neural network approach. Appl. Sci. 11(21), 10248 (2021)

    Article  Google Scholar 

  56. Awadh, S.M.; Al-Mimar, H.: Statistical analysis of the relations between API, specific gravity and sulfur content in the universal crude oil. Int. J. Sci. Res. 4(5), 1279–1284 (2015)

    Google Scholar 

  57. Duissenov, D: Production and processing of sour crude and natural gas-challenges due to increasing stringent regulations. Institutt for petroleumsteknologi og anvendt geofysikk] (2013)

  58. Ahmad, J.; Yusup, S.; Bokhari, A.; Kamil, R.N.M.: Study of fuel properties of rubber seed oil based biodiesel. Energy Conv. Manag. 78, 266–275 (2014). https://doi.org/10.1016/j.enconman.2013.10.056

    Article  Google Scholar 

  59. Abd Majid, R.; Mohammad, A.W.; May, C.Y.: Properties of residual palm pressed fibre oil. J. Oil Palm Res. 24, 1310–1317 (2012)

    Google Scholar 

  60. Eman Mohamed Ibrahim, M.: Carbon dioxide-oil minimum miscibility pressure methods overview. In: Badie, I.M.; Hseen, O.B. (Eds.) Enhanced oil recovery, p. 2. IntechOpen, London (2022). https://doi.org/10.5772/intechopen.106637

    Chapter  Google Scholar 

  61. Macaya, C. C., Durán, R. E., Hernández, L., Rodríguez-Castro, L., Barra-Sanhueza, B., Dorochesi, F., Seeger, M.: Bioremediation of Petroleum. In: Reference Module in Life Sciences. Elsevier (2019). https://doi.org/10.1016/B978-0-12-809633-8.20810-8

  62. Posthuma, J.: The composition of petroleum. Rapp. P.-V Reun. Cons. Int. Explor. Mer 171, 7–16 (1977)

    Google Scholar 

  63. Volkman, J. K.: Hydrocarbons. In: Geochemistry, pp. 323–325. Springer Netherlands. (1998). https://doi.org/10.1007/1-4020-4496-8_158

  64. Wang, M.; Wang, C.; Hu, X.; Zhang, H.; He, S.; Lv, S.: Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river. China. Mar. Pollut. Bull. 90(1–2), 88–94 (2015). https://doi.org/10.1016/j.marpolbul.2014.11.017

    Article  Google Scholar 

  65. Zhang, H.; Hou, D.; Li, K.: An improved CO2-crude oil minimum miscibility pressure correlation. J. Chem. 2015, 1–10 (2015)

    Google Scholar 

  66. Chen, G.; Gao, H.; Fu, K.; Zhang, H.; Liang, Z.; Tontiwachwuthikul, P.: An improved correlation to determine minimum miscibility pressure of CO2–oil system. Green Energy Environ. 5(1), 97–104 (2020)

    Article  Google Scholar 

  67. Khan, S., Pope, G., Sepehrnoori, K.: Fluid characterization of three-phase CO2/oil mixtures. In: spe improved oil recovery conference? (1992)

  68. Ando, S.; Wu, Y.; Nakaya, S.; Tsue, M.: Droplet combustion behavior of oxidatively degraded Methyl Laurate and Methyl Oleate in microgravity. Combust. Flame 214, 199–210 (2020)

    Article  Google Scholar 

  69. Zhang, H.; Liu, W.; Xu, H.; Zhuo, Q.; Sun, X.: Adsorption behavior of Methyl Laurate and dodecane on the sub-bituminous coal surface: molecular dynamics simulation and experimental study. Minerals 9(1), 30 (2019)

    Article  Google Scholar 

  70. Fan, G.; Zhao, Y.; Li, Y.; Zhang, X.; Chen, H.: Research for reducing the Minimum Miscible Pressure of crude oil and carbon dioxide by injecting citric acid isobutyl ester. Oil Gas Sci. Technol. Revue d’IFP Energies nouvelles 76, 30 (2021)

    Article  Google Scholar 

  71. Lashkarbolooki, M.; Eftekhari, M.J.; Najimi, S.; Ayatollahi, S.: Minimum miscibility pressure of CO2 and crude oil during CO2 injection in the reservoir. J. Supercrit. Fluids 127, 121–128 (2017)

    Article  Google Scholar 

  72. Ning, P.; Yang, G.; Hu, L.; Sun, J.; Shi, L.; Zhou, Y.; Wang, Z.; Yang, J.: Recent advances in the valorization of plant biomass. Biotechnol. Biofuels 14(1), 102 (2021). https://doi.org/10.1186/s13068-021-01949-3

    Article  Google Scholar 

  73. Sulaimon, A.A.; Yusoff, M.H.: Wax and asphaltene deposition tendency of malaysian crude oils. ICIPEG 2014, Singapore (2015)

    Book  Google Scholar 

  74. Kiyingi, W.; Guo, J.-X.; Xiong, R.-Y.; Su, L.; Yang, X.-H.; Zhang, S.-L.: Crude oil wax: a review on formation, experimentation, prediction, and remediation techniques. Pet. Sci. 19(5), 2343–2357 (2022). https://doi.org/10.1016/j.petsci.2022.08.008

    Article  Google Scholar 

  75. Oyinloye, O.; Al Darmaki, N.; Al Zarooni, M.; Boukadi, F.; Nantongo, H.: Estimation of minimum miscibility pressure for flue gas injection using soft experimentations. Nat. Resour. 12(11), 363–381 (2021)

    Google Scholar 

  76. Le Van, S.; Chon, B.H.: Effects of salinity and slug size in miscible CO2 water-alternating-gas core flooding experiments. J. Ind. Eng. Chem. 52, 99–107 (2017). https://doi.org/10.1016/j.jiec.2017.03.030

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Dr. Mariyamni Awang and Universiti Teknologi Petronas for generously providing all the necessary equipment, facilitating the seamless execution of our experiments.

Funding

Authors would like to thank Malaysian Ministry of Education for the funding this study via MyRA. Authors would also like to thank Universiti Teknologi Petronas for providing all the equipment, enabling the tests to run smoothly.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AQ and SA. The first draft of the manuscript was written by AQ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aminah Qayyimah Mohd Aji.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Aji, A.Q., Raya, S.A. Application of Fatty Acid Methyl Ester from Biomass for CO2-Crude Oil MMP Reduction. Arab J Sci Eng 49, 8819–8832 (2024). https://doi.org/10.1007/s13369-024-08827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-024-08827-8

Keywords

Navigation