Skip to main content
Log in

Investigation of Carbon Steels (API 5L X52 and API 5L X60) Dissolution CO2–H2S Solutions in the Presence of Acetic Acid: Mechanistic Reaction Pathway and Kinetics

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The comparison of different grades of carbon steel (API 5L X52 and X60) dissolution in CO2–H2S solution at various acetic acid concentrations was investigated via electrochemical experiments and other complementary techniques such as FESEM, XPS and contact angle measurements. The results are evident to suggest that the carbon steel grade strongly influences corrosion rate as X60 corrodes more than X52 in the system being investigated. The possible mechanism behind the higher corrosion rate observed for X60 is elucidated via analyzing the impedance data acquired at various overpotentials by the reaction mechanism analysis approach. The kinetics of dissolution in the given medium for the carbon steels is also reported. It is observed that X52 possess higher surface energy (lower contact angle), which eventually increases the formation rate of FeCO3 on X52. The FeCO3 layer formed on X52 is fine in nature, acts as a protective layer and decreases the corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ochoa, N.; Vega, C.; Pébère, N.; Lacaze, J.; Brito, J.L.: CO2 corrosion resistance of carbon steel in relation with microstructure changes. Mater. Chem. Phys. 156, 198–205 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.047

    Article  Google Scholar 

  2. Santos, B.A.F.; Souza, R.C.; Serenario, M.E.D.; Mendes Junior, E.P.; Simões, T.A.; de Oliveira, J.R.; Vaz, G.L.; Caldeira, L.; da Cunha Ponciano Gomes, J.A.; Bueno, A.H.S.: The role of acetic acid in FeCO3 scale deposition on CO2 corrosion of API X65 carbon steel under high temperatures. Corros. Eng. Sci. Technol. 56, 553–564 (2021). https://doi.org/10.1080/1478422X.2021.1920171

    Article  Google Scholar 

  3. Zhang, S.; Li, Y.; Liu, B.; Mou, L.; Yu, S.; Zhang, Y.; Yan, X.: Understanding the synergistic effect of CO2, H2S and fluid flow towards carbon steel corrosion. Vacuum 196, 110790 (2022). https://doi.org/10.1016/j.vacuum.2021.110790

    Article  Google Scholar 

  4. Rustandi, A.; Adhika, N.; Prima, T.; Aziz, N.: Behavior of CO2 corrosion of API 5L X52 steel in NaCl solution under turbulent flow condition. Adv. Mater. Res. 789, 476–483 (2013). https://doi.org/10.4028/www.scientific.net/AMR.789.476

    Article  Google Scholar 

  5. George, K.S.; Nešic, S.: Investigation of carbon dioxide corrosion of mild steel in the presence of acetic acid—Part 1: basic mechanisms. Corrosion 63, 178–186 (2007). https://doi.org/10.5006/1.3278342

    Article  Google Scholar 

  6. Li, S.; Zeng, Z.; Harris, M.A.; Sánchez, L.J.; Cong, H.: CO2 corrosion of low carbon steel under the joint effects of time-temperature-salt concentration. Front. Mater. 6, 1–17 (2019). https://doi.org/10.3389/fmats.2019.00010

    Article  Google Scholar 

  7. Kermani, M.B.; Morshed, A.: Carbon dioxide corrosion in oil and gas production—a compendium. Corrosion 59, 659–683 (2003). https://doi.org/10.5006/1.3277596

    Article  Google Scholar 

  8. Liu, M.; Wang, J.; Ke, W.: Corrosion behaviour of X52 pipeline steel in high H2S concentration solutions at temperatures ranging from 25°C to 140°C. Corros. Eng. Sci. Technol. 48, 380–387 (2013). https://doi.org/10.1179/1743278213Y.0000000095

    Article  Google Scholar 

  9. Hernández-Espejel, A.; Domínguez-Crespo, M.A.; Cabrera-Sierra, R.; Rodríguez-Meneses, C.; Arce-Estrada, E.M.: Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media. Corros. Sci. 52, 2258–2267 (2010). https://doi.org/10.1016/j.corsci.2010.04.003

    Article  Google Scholar 

  10. Qin, M.; Liao, K.; He, G.; Zou, Q.; Zhao, S.; Zhang, S.: Corrosion mechanism of X65 steel exposed to H2S/CO2 brine and H2S/CO2 vapor corrosion environments. J. Nat. Gas Sci. Eng. 106, 104774 (2022). https://doi.org/10.1016/j.jngse.2022.104774

    Article  Google Scholar 

  11. Gao, S.; Brown, B.; Young, D.; Nesic, N.; Singer, M.: Formation mechanisms of iron oxide and iron sulfide at high temperature in aqueous H2S corrosion environment. J. Electrochem. Soc. 165, 171–179 (2018). https://doi.org/10.1149/2.0921803jes

    Article  Google Scholar 

  12. Asadian, M.; Sabzi, M.; Anijdan, S.H.M.: The effect of temperature, CO2, H2S gases and the resultant iron carbonate and iron sulfide compounds on the sour corrosion behaviour of ASTM A-106 steel for pipeline transportation. Int. J. Press. Vessel. Pip. 171, 184–193 (2019). https://doi.org/10.1016/j.ijpvp.2019.02.019

    Article  Google Scholar 

  13. Li, D.P.; Zhang, L.; Yang, J.W.; Lu, M.X.; Ding, J.H.; Liu, M.L.: Effect of H2S concentration on the corrosion behavior of pipeline steel under the coexistence of H2S and CO2. Int. J. Miner. Metall. Mater. 21, 388–394 (2014). https://doi.org/10.1007/s12613-014-0920-y

    Article  Google Scholar 

  14. Zou, Q.; Liao, K.; Leng, J.; Zhao, S.; He, G.; Zhou, F.; Pu, C.: Corrosion mechanism of oil field gathering pipeline containing small H2S impurity. Arab. J. Sci. Eng. 47, 12075–12087 (2022). https://doi.org/10.1007/s13369-022-06867-6

    Article  Google Scholar 

  15. Souza, R.C.; Santos, B.A.F.; Gonçalves, M.C.; Mendes Júnior, E.P.; Simões, T.A.; Oliveira, J.R.; Vaz, G.L.; Caldeira, L.; Gomes, J.A.C.P.; Bueno, A.H.: The role of temperature and H2S (thiosulfate) on the corrosion products of API X65 carbon steel exposed to sweet environment. J. Pet. Sci. Eng. 180, 78–88 (2019). https://doi.org/10.1016/j.petrol.2019.05.036

    Article  Google Scholar 

  16. Qi, Y.; Luo, H.; Zheng, S.; Chen, C.; Lv, Z.; Xiong, M.: Effect of temperature on the corrosion behavior of carbon steel in hydrogen sulphide environments. Int. J. Electrochem. Sci. 9, 2101–2112 (2014)

    Article  Google Scholar 

  17. Madani Sani, F.; Brown, B.; Nesic, S.: An electrochemical study of the effect of high salt concentration on uniform corrosion of carbon steel in aqueous CO2 solutions. J. Electrochem. Soc. 168, 051501 (2021). https://doi.org/10.1149/1945-7111/abf5f9

    Article  Google Scholar 

  18. Liu, H.; Fu, C.; Gu, T.; Zhang, G.; Lv, Y.; Wang, H.; Liu, H.: Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corros. Sci. 100, 484–495 (2015). https://doi.org/10.1016/j.corsci.2015.08.023

    Article  Google Scholar 

  19. Talukdar, A.; Baranwal, P.K.; Talukdar, M.K.; Rajaraman, P.V.: Synergistic effect of H2S and acetic acid on CO2 corrosion of carbon steel at elevated temperature. JOM 75, 3757–3770 (2023). https://doi.org/10.1007/s11837-023-05952-x

    Article  Google Scholar 

  20. Kahyarian, A.; Brown, B.; Nešić, S.: Mechanism of cathodic reactions in acetic acid corrosion of iron and mild steel. Corrosion 72, 1539–1546 (2016)

    Article  Google Scholar 

  21. Tran, T.; Brown, B.; Nesic, S.; Tribollet, B.: Investigation of the mechanism for acetic acid corrosion of mild steel. NACE Int. Corros. Conf. Ser. 70, 1–12 (2013)

    Google Scholar 

  22. Tran, T.; Brown, B.; Nešić, S.; Tribollet, B.: Investigation of the electrochemical mechanisms for acetic acid corrosion of mild steel. Corrosion 70, 223–229 (2014). https://doi.org/10.5006/0933

    Article  Google Scholar 

  23. Dhongde, V.; Velpandian, M.; Haider, M.A.; Basu, S.: A Sr2CoNbO6-δ@Sm0.2Ce0.8O2-δ nanofiber composite as cathode accelerates oxygen reduction reaction for IT-SOFC to. ECS Trans. 111, 2271–2276 (2023). https://doi.org/10.1149/11106.2271ecst

    Article  Google Scholar 

  24. Singh, M.M.; Gupta, A.: Corrosion behavior of mild steel in acetic acid solutions. Corrosion 56, 371–379 (2000)

    Article  Google Scholar 

  25. Talukdar, A.; Rajaraman, P.V.: Investigation of acetic acid effect on carbon steel corrosion in CO2–H2S medium: mechanistic reaction pathway and kinetics. ACS Omega 5, 11378–11388 (2020). https://doi.org/10.1021/acsomega.0c00387

    Article  Google Scholar 

  26. Dhongde, N.R.; Baranwal, P.K.; Rajaraman, P.V.: Functionalization of graphene oxide with an ionic liquid (1-butyl-3-methylimidazolium acetate): preparation of epoxy-based coating on carbon steel for anticorrosive applications. J. Appl. Polym. Sci. (2023). https://doi.org/10.1002/app.54026

    Article  Google Scholar 

  27. Khan, H.M.; Özer, G.; Yilmaz, M.S.; Koc, E.: Corrosion of additively manufactured metallic components: a review. Arab. J. Sci. Eng. 47, 5465–5490 (2022). https://doi.org/10.1007/s13369-021-06481-y

    Article  Google Scholar 

  28. Karimi Abadeh, H.; Javidi, M.: Assessment and influence of temperature, NaCl and H2S on CO2 corrosion behavior of different microstructures of API 5L X52 carbon steel in aqueous environments. J. Nat. Gas Sci. Eng. 67, 93–107 (2019). https://doi.org/10.1016/j.jngse.2019.04.023

    Article  Google Scholar 

  29. Zhang, L.; Yang, J.; Sun, J.; Lu, M.: Effect of pressure on wet H2S/CO2 corrosion of pipeline steel. NACE Int. Corros. Conf. Ser., pp. 1–9 (2009)

  30. Kahyarian, A.; Schumaker, A.; Brown, B.; Nesic, S.: Acidic corrosion of mild steel in the presence of acetic acid: mechanism and prediction. Electrochim. Acta 258, 639–652 (2017). https://doi.org/10.1016/j.electacta.2017.11.109

    Article  Google Scholar 

  31. Rihan, R.O.: Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution. Mater. Res. 16, 227–236 (2013). https://doi.org/10.1590/S1516-14392012005000170

    Article  Google Scholar 

  32. Keddam, M.; Mattos, O.R.; Takenouti, H.: Reaction model for iron dissolution studied by electrode impedance: II. Determination of the reaction model. J. Electrochem. Soc. 128, 266–274 (1981). https://doi.org/10.1149/1.2127402

    Article  Google Scholar 

  33. Folena, M.C.; Ponciano, J.A.C.: Assessment of hydrogen embrittlement severity of an API 5LX80 steel in H2S environments by integrated methodologies. Eng. Fail. Anal. 111, 104380 (2020). https://doi.org/10.1016/j.engfailanal.2020.104380

    Article  Google Scholar 

  34. Kappes, M.; Frankel, G.S.; Sridhar, N.; Carranza, R.M.: Reaction paths of thiosulfate during corrosion of carbon steel in acidified brines. J. Electrochem. Soc. 159, C195–C204 (2012). https://doi.org/10.1149/2.085204jes

    Article  Google Scholar 

  35. Vivier, V.; Orazem, M.E.: Impedance analysis of electrochemical systems. Chem. Rev. 122, 11131–11168 (2022). https://doi.org/10.1021/acs.chemrev.1c00876

    Article  Google Scholar 

  36. Perez, N.: Electrochemistry and Corrosion Science. Springer, Berlin (2004)

    Book  Google Scholar 

  37. Zhang, L.; Zhong, W.; Yang, J.; Gu, T.: Effects of temperature and partial pressure on H2S/CO2 corrosion of pipeline steel in sour conditions. NACE Int. Corros. Conf. Ser. NACE-11079 (2011)

  38. Instruments, G.: Basics of Electrochemical Impedance Spectroscopy. https://scholar.google.co.in/scholar?q=basics+of+electrochemical+impedance+spectroscopy&hl=en&as_sdt=0&as_vis=1&oi=scholart

  39. Kumar, A.; Das, C.: A novel eco-friendly inhibitor of chayote fruit extract for mild steel corrosion in 1 M HCl: electrochemical, weight loss studies, and the effect of temperature. Sustain. Chem. Pharm. 36, 101261 (2023). https://doi.org/10.1016/j.scp.2023.101261

    Article  Google Scholar 

  40. Amrutha, M.S.; Rao, M.T.; Ramanathan, S.: Mechanistic analysis of anodic dissolution of Zr in acidic fluoride media. J. Electrochem. Soc. 165, C162–C170 (2018). https://doi.org/10.1149/2.0851803jes

    Article  Google Scholar 

  41. Akeer, E.; Brown, B.; Nesic, S.: The influence of mild steel metallurgy on the initiation of localized CO2 corrosion in flowing conditions. NACE Int. Corros. Conf. Ser., pp. 1–16 (2013)

  42. Calan-Canche, D.; García-Hernández, R.; Dzib-Pérez, L.; Bilyy, O.L.; González-Sánchez, J.: Susceptibility to the absorption of atomic hydrogen in API 5L X60 steels with unconventional heat treatment. Mater. Sci. 54, 573–581 (2019). https://doi.org/10.1007/s11003-019-00220-3

    Article  Google Scholar 

  43. López, D.A.; Schreiner, W.H.; De Sánchez, S.R.; Simison, S.N.: The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization. Appl. Surf. Sci. 207, 69–85 (2003). https://doi.org/10.1016/S0169-4332(02)01218-7

    Article  Google Scholar 

  44. Alam, M.T.; Chan, E.W.L.; De Marco, R.; Huang, Y.; Bailey, S.: Electrochemical and surface analysis studies on the carbon dioxide corrosion of X-65 carbon steel. Electroanalysis 28, 2910–2921 (2016). https://doi.org/10.1002/elan.201600309

    Article  Google Scholar 

  45. Wang, L.; Wang, H.; Seyeux, A.; Zanna, S.; Pailleret, A.; Nesic, S.; Marcus, P.: Adsorption mechanism of quaternary ammonium corrosion inhibitor on carbon steel surface using ToF-SIMS and XPS. Corros. Sci. 213, 110952 (2023). https://doi.org/10.1016/j.corsci.2022.110952

    Article  Google Scholar 

  46. Singh, A.; Ansari, K.R.; Chauhan, D.S.; Quraishi, M.A.; Lgaz, H.; Chung, I.M.: Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium. J. Colloid Interface Sci. 560, 225–236 (2020). https://doi.org/10.1016/j.jcis.2019.10.040

    Article  Google Scholar 

  47. Behera, S.K.; Kumar, P.A.; Dogra, N.; Nosonovsky, M.; Rohatgi, P.: Effect of microstructure on contact angle and corrosion of ductile iron: iron-graphite composite. Langmuir 35, 16120–16129 (2019). https://doi.org/10.1021/acs.langmuir.9b02395

    Article  Google Scholar 

  48. Wei, L.; Pang, X.; Gao, K.: Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments. Corros. Sci. 103, 132–144 (2016). https://doi.org/10.1016/j.corsci.2015.11.009

    Article  Google Scholar 

  49. Choi, Y.S.; Nesic, S.; Ling, S.: Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions. Electrochim. Acta 56, 1752–1760 (2011). https://doi.org/10.1016/j.electacta.2010.08.049

    Article  Google Scholar 

  50. Liu, Z.; Gao, X.; Du, L.; Li, J.; Li, P.; Yu, C.; Misra, R.D.K.; Wang, Y.: Comparison of corrosion behaviour of low-alloy pipeline steel exposed to H2S/CO2-saturated brine and vapour-saturated H2S/CO2 environments. Electrochim. Acta 232, 528–541 (2017). https://doi.org/10.1016/j.electacta.2017.02.114

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate IEOT, ONGC, Panvel, Navy Mumbai for the financial assistance, Central Instruments Facility (CIF) of the Indian Institute of Technology (IIT) Guwahati for providing analytical facilities, and Aries Engineer, Maharashtra, India for metal fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Venkatesh Rajaraman.

Ethics declarations

Conflict of interst

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 217 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, S., Dhongde, N.R., Talukdar, M.K. et al. Investigation of Carbon Steels (API 5L X52 and API 5L X60) Dissolution CO2–H2S Solutions in the Presence of Acetic Acid: Mechanistic Reaction Pathway and Kinetics. Arab J Sci Eng 49, 8363–8381 (2024). https://doi.org/10.1007/s13369-024-08812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-024-08812-1

Keywords

Navigation