Skip to main content
Log in

IoT-Enabled Smart Mental Health Assessment Using Deep Hybrid Regression Models Over Actigraph-Based Sequential Motor Activity Data

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research puts forward novel deep hybrid frameworks for assessment of mental health indicators viz. depression and sleep quality using IoT-based motor activity recordings. The study employs long short-term memory (LSTM) to extract high-level features from sequential motor activity data, which are then combined with statistical features of the raw data to form a hybrid feature extraction model. The combined feature vector obtained via the hybrid feature extractor is fed into four regression models, namely linear regression (LR), sequential minimal optimization regression (SMOR), random forest regression (RFR) and adaptive neuro-fuzzy inference system (ANFIS) forming four deep hybrid regression models, namely LSTM-LR, LSTM-SMOR, LSTM-RFR, and LSTM-ANFIS for prediction of depression and sleep quality. The proposed deep hybrid frameworks are validated on benchmark datasets, namely the Depresjon dataset and the MESA actigraphy dataset, and the best performance is observed by LSTM-RFR with the adjusted R2 value of 74.19% on the MESA dataset. On validating the significance of statistical features, it has been observed that all the models show significant improvement in performance on combining the statistical features with high-level features with highest reduction in mean absolute error as 4.0436 and highest increase in R2 statistic as 0.1651. Model building time of the four regression methods is also compared for which LR gave the best results as only 0.01 s for training and testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kumar, A.; Sangwan, S.R.; Arora, A.; Menon, V.G.: Depress-dcnf: a deep convolutional neuro-fuzzy model for detection of depression episodes using iomt. Appl. Soft Comput. 122, 108863 (2023)

    Article  Google Scholar 

  2. Kumar, A., Sharma, A. and Arora, A: Anxious depression prediction in real-time social data. In: International conference on advances in engineering science management & technology (ICAESMT)-2019, Uttaranchal University, Dehradun, India. March 2019

  3. Arora, A.; Chakraborty, P.; Bhatia, M.P.S.: Analysis of data from wearable sensors for sleep quality estimation and prediction using deep learning. Arab. J. Sci. Eng. 45(12), 10793–10812 (2020)

    Article  Google Scholar 

  4. Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G.: Reviews of wearable healthcare systems: materials, devices and system integration. Mater. Sci. Eng. R. Rep. 140, 100523 (2020)

    Article  Google Scholar 

  5. Papa, A.; Mital, M.; Pisano, P.; Del Giudice, M.: E-health and wellbeing monitoring using smart healthcare devices: an empirical investigation. Technol. Forecast. Soc. Chang. 153, 119226 (2020)

    Article  Google Scholar 

  6. Arora, A.; Chakraborty, P.; Bhatia, M.P.S.: Intervention of wearables and smartphones in real time monitoring of sleep and behavioral health: an assessment using adaptive neuro-fuzzy technique. Arab. J. Sci. Eng. 47, 1999–2024 (2022)

    Article  Google Scholar 

  7. Sasaki, J.E.; John, D.; Freedson, P.S.: Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 14(5), 411–416 (2011)

    Article  PubMed  Google Scholar 

  8. Sadeh, A.; Acebo, C.: The role of actigraphy in sleep medicine. Sleep Med. Rev. 6(2), 113–124 (2002)

    Article  PubMed  Google Scholar 

  9. Dzieżyc, M.; Gjoreski, M.; Kazienko, P.; Saganowski, S.; Gams, M.: Can we ditch feature engineering? End-to-End deep learning for affect recognition from physiological sensor data. Sensors 20(22), 6535 (2020)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Arora, A.; Chakraborty, P.; Bhatia, M.P.S.: Identifying digital biomarkers in actigraph based sequential motor activity data for assessment of depression: a model evaluating SVM in LSTM extracted feature space. Int. J. Inf. Technol. 15(2), 1–6 (2023)

    Google Scholar 

  11. Sadeh, A.; Hauri, P.J.; Kripke, D.F.; Lavie, P.: The role of actigraphy in the evaluation of sleep disorders. Sleep 18(4), 288–302 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. Burton, C.; McKinstry, B.; Tătar, A.S.; Serrano-Blanco, A.; Pagliari, C.; Wolters, M.: Activity monitoring in patients with depression: a systematic review. J. Affect. Disord. 145(1), 21–28 (2013)

    Article  PubMed  Google Scholar 

  13. George, S.V.; Kunkels, Y.K.; Booij, S.; Wichers, M.: Uncovering complexity details in actigraphy patterns to differentiate the depressed from the non-depressed. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  14. Sadeh, A.: The role and validity of actigraphy in sleep medicine: an update. Sleep Med. Rev. 15(4), 259–267 (2011)

    Article  PubMed  Google Scholar 

  15. Razavi, N.; Horn, H.; Koschorke, P.; Hügli, S.; Höfle, O.; Müller, T.; Strik, W.; Walther, S.: Measuring motor activity in major depression: the association between the hamilton depression rating scale and actigraphy. Psychiatry Res. 190(2–3), 212–216 (2011)

    Article  PubMed  Google Scholar 

  16. Korszun, A.; Young, E.A.; Engleberg, N.C.; Brucksch, C.B.; Greden, J.F.; Crofford, L.A.: Use of actigraphy for monitoring sleep and activity levels in patients with fibromyalgia and depression. J. Psychosom. Res. 52(6), 439–443 (2002)

    Article  PubMed  Google Scholar 

  17. Bender, B.G.; Leung, S.B.; Leung, D.Y.: Actigraphy assessment of sleep disturbance in patients with atopic dermatitis: an objective life quality measure. J. allergy clin. immunol. 111(3), 598–602 (2003)

    Article  PubMed  Google Scholar 

  18. Leeder, J.; Glaister, M.; Pizzoferro, K.; Dawson, J.; Pedlar, C.: Sleep duration and quality in elite athletes measured using wristwatch actigraphy. J. Sports Sci. 30(6), 541–545 (2012)

    Article  PubMed  Google Scholar 

  19. Landis, C.A.; Frey, C.A.; Lentz, M.J.; Rothermel, J.; Buchwald, D.; Shaver, J.L.: Self-reported sleep quality and fatigue correlates with actigraphy in midlife women with fibromyalgia. Nurs. Res. 52(3), 140–147 (2003)

    Article  PubMed  Google Scholar 

  20. Forner-Cordero, A.; Umemura, G.S.; Furtado, F.; Gonçalves, B.D.S.B.: Comparison of sleep quality assessed by actigraphy and questionnaires to healthy subjects. Sleep Sci. 11(3), 141 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cellini, N.; Menghini, L.; Mercurio, M.; Vanzetti, V.; Bergamo, D.; Sarlo, M.: Sleep quality and quantity in Italian University students: an actigraphic study. Chronobiol. Int. 37(11), 1538–1551 (2020)

    Article  PubMed  Google Scholar 

  22. Aili, K.; Åström-Paulsson, S.; Stoetzer, U.; Svartengren, M.; Hillert, L.: Reliability of actigraphy and subjective sleep measurements in adults: the design of sleep assessments. J. Clin. Sleep Med. 13(1), 39–47 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van Laerhoven, K., Borazio, M., Kilian, D. Schiele, B: Sustained logging and discrimination of sleep postures with low-level, wrist-worn sensors. In: 2008 12th IEEE international symposium on wearable computers IEEE. 69–76 September 2008

  24. Tazawa, Y.; Liang, K.C.; Yoshimura, M.; Kitazawa, M.; Kaise, Y.; Takamiya, A.; Kishi, A.; Horigome, T.; Mitsukura, Y.; Mimura, M.; Kishimoto, T.: Evaluating depression with multimodal wristband-type wearable device: screening and assessing patient severity utilizing machine-learning. Heliyon 6(2), e03274 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choi, J.G.; Ko, I.; Han, S.: Depression level classification using machine learning classifiers based on actigraphy data. IEEE Access 9, 116622–116646 (2021)

    Article  Google Scholar 

  26. Raihan, M., Bairagi, A.K. and Rahman, S. A: Machine learning based study to predict depression with monitoring actigraph watch data. In: 2021 12th International conference on computing communication and networking technologies (ICCCNT). IEEE. 1–5 July 2021

  27. E. Garcia-Ceja, M. Riegler, P. Jakobsen, J. Tørresen, T. Nordgreen, K.J. Oedegaard, O.B. Fasmer, Depresjon: A motor activity database of depression episodes in unipolar and bipolar patients, In: Proceedings of the 9th ACM multimedia systems conference, 472–477 June 2018

  28. J. G. Rodríguez-Ruiz, C. E. Galván-Tejada, S. Vázquez-Reyes, J. I. Gálvan-Tejada, H. Gamboa-Rosales: Nighttime depression episodes classification using a formal method: knowledge discovery in databases. In: 2019 7th International conference in software engineering research and innovation (CONISOFT). 2019, 207–212, doi: https://doi.org/10.1109/CONISOFT.2019.00037.

  29. Rodríguez-Ruiz, J.G.; Galván-Tejada, C.E.; Zanella-Calzada, L.A.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Gamboa-Rosales, H.; Luna-García, H.; Magallanes-Quintanar, R.; Soto-Murillo, M.A.: Comparison of night, day and 24 h motor activity data for the classification of depressive episodes. Diagnostics 10(3), 162 (2020). https://doi.org/10.3390/diagnostics10030162

    Article  PubMed  PubMed Central  Google Scholar 

  30. Garcia-Ceja, E., Riegler, M., Jakobsen, P., Torresen, J., Nordgreen, T., Oedegaard, K.J. Fasmer, O.B: Motor activity based classification of depression in unipolar and bipolar patients. In 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS) IEEE. 316–321 June 2018

  31. Kulam, S.: Time-Series Classification With Uni-Dimensional Convolutional Neural Networks: an Experimental Comparison With Long Short-Term Memory Networks. Faculty of Mathematics and Natural Sciences, University of Oslo, Department Of Informatics (2019)

    Google Scholar 

  32. J.L. Frogner, F.M. Noori, P. Halvorsen, S.A. Hicks, E. Garcia-Ceja, J. Torresen, M.A. Riegler: One-dimensional convolutional neural networks on motor activity measurements in detection of depression, In: Proceedings of the 4th International workshop on multimedia for personal health & health care. 9–15 Oct 2019

  33. Jakobsen, P.; Garcia-Ceja, E.; Riegler, M.; Stabell, L.A.; Nordgreen, T.; Torresen, J.; Fasmer, O.B.; Oedegaard, K.J.: Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls. PLoS ONE 15(8), 0231995 (2020)

    Article  Google Scholar 

  34. Palotti, J.; Mall, R.; Aupetit, M.; Rueschman, M.; Singh, M.; Sathyanarayana, A.; Taheri, S.; Fernandez-Luque, L.: Benchmark on a large cohort for sleep-wake classification with machine learning techniques. NPJ digit. Med. 2(1), 1–9 (2019)

    Article  Google Scholar 

  35. El-Manzalawy, Y., Buxton, O. and Honavar, V: Sleep/wake state prediction and sleep parameter estimation using unsupervised classification via clustering. In: 2017 IEEE International conference on bioinformatics and biomedicine (BIBM) IEEE. 718–723 November 2017

  36. Li, X.; Zhang, Y.; Jiang, F.; Zhao, H.: A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy. Chronobiol. Int. 37(7), 1002–1015 (2020)

    Article  PubMed  Google Scholar 

  37. Khademi, A., El-Manzalawy, Y., Buxton, O.M., Honavar, V: Toward personalized sleep-wake prediction from actigraphy. In: 2018 IEEE EMBS International conference on biomedical & health informatics (BHI). 414–417 March 2018

  38. Banfi, T.; Valigi, N.; di Galante, M.; d’Ascanio, P.; Ciuti, G.; Faraguna, U.: Efficient embedded sleep wake classification for open-source actigraphy. Sci. Rep. 11(1), 1–12 (2021)

    Article  Google Scholar 

  39. Cho, T.; Sunarya, U.; Yeo, M.; Hwang, B.; Koo, Y.S.; Park, C.: Deep-ACTINet: end-to-end deep learning architecture for automatic sleep-wake detection using wrist actigraphy. Electronics 8(12), 1461 (2019)

    Article  Google Scholar 

  40. Khademi, A.; Yasser, E.M.; Master, L.; Buxton, O.M.; Honavar, V.G.: Personalized sleep parameters estimation from actigraphy: a machine learning approach. Nat. Sci. Sleep 11, 387 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hossain, H.S.; Ramamurthy, S.R.; Khan, M.A.A.H.; Roy, N.: An active sleep monitoring framework using wearables. ACM Trans. Interact. Intell. Syst. (TiiS) 8(3), 1–30 (2018)

    Article  Google Scholar 

  42. Sathyanarayana, A.; Joty, S.; Fernandez-Luque, L.; Ofli, F.; Srivastava, J.; Elmagarmid, A.; Arora, T.; Taheri, S.: Sleep quality prediction from wearable data using deep learning. JMIR Mhealth Uhealth 4(4), e125 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sano, A., Phillips, A.J., Amy, Z.Y., McHill, A.W., Taylor, S., Jaques, N., Czeisler, C.A., Klerman, E.B., Picard, R.W: Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. In: 2015 IEEE 12th International conference on wearable and implantable body sensor networks (BSN) 1–6. IEEE. June 2015

  44. Salehinejad, H., Sankar, S., Barfett, J., Colak, E., Valaee, S: Recent advances in recurrent neural networks. arXiv preprint arXiv:1801.01078. (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshika Arora.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, A. IoT-Enabled Smart Mental Health Assessment Using Deep Hybrid Regression Models Over Actigraph-Based Sequential Motor Activity Data. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08739-7

Keywords

Navigation