Skip to main content
Log in

Numerical Analysis of InGaN/GaN Intermediate Band Solar Cells Under X-sun Concentration, In-compositions, and Doping: Unlocking the Potential of Concentrated Photovoltaics

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Our research focuses on advancing solar energy through the study of nano- and microelectronic structures. Using the finite element method, we analyze key characteristics of InGaN/GaN intermediate band solar cells (IBSC), including refractive index, absorption coefficient, short-circuit current, open-circuit voltage, fill factor, and efficiency with a focus on the X-sun concentration effect. We assess nonpolar solar cell performance at room temperature and incorporate experimental data from American Society for Testing and Materials (ASTM), encompassing AM1.5D, AM1.5G, and AM0, to analyze refractive and absorption spectra. Investigating constraints on solar cell efficiency, we find that under AM1.5G spectra, the short-circuit current is higher compared to AM1.5D and AM0. Additionally, open-circuit voltage, fill factor, and efficiency increase significantly with elevated X-sun concentration and doping. Our analysis of ASTM data indicates that InGaN-based IBSC are efficiently able to absorb the visible spectrum and withstand intense X-sun concentration, making them suitable for concentrated photovoltaic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The numerical data utilized in this study are available upon request. The data associated with the manuscript is provided in the form of a Python file (file.py).

References

  1. R. and M. ltd, ‘Solar Energy Market By Technology, By Solar Module, By Application, By End-Use: Global Opportunity Analysis and Industry Forecast, 2023–2032’. Accessed: Jul. 30, 2023. [Online]. Available: https://www.researchandmarkets.com/reports/4989453/solar-energy-market-by-technology-by-solar

  2. ‘Global cumulative installed solar PV capacity 2022’, Statista. Accessed: Nov. 26, 2023. [Online]. Available: https://www.statista.com/statistics/280220/global-cumulative-installed-solar-pv-capacity/

  3. Vidal, R.; Alberola-Borràs, J.-A.; Sánchez-Pantoja, N.; Mora-Seró, I.: Comparison of perovskite solar cells with other photovoltaics technologies from the point of view of life cycle assessment. Adv. Energy Sustain. Res. 2(5), 2000088 (2021). https://doi.org/10.1002/aesr.202000088

    Article  Google Scholar 

  4. Guo, J.; Min, J.: A cost analysis of fully solution-processed ITO-free organic solar modules. Adv. Energy Mater. 9(3), 1802521 (2019). https://doi.org/10.1002/aenm.201802521

    Article  MathSciNet  Google Scholar 

  5. Moon, S.; Kim, K.; Kim, Y.; Heo, J.; Lee, J.: Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. (2016). https://doi.org/10.1038/srep30107

    Article  Google Scholar 

  6. Feltrin, A.; Freundlich, A.: Material considerations for terawatt level deployment of photovoltaics. Renew. Energy 33(2), 180–185 (2008). https://doi.org/10.1016/j.renene.2007.05.024

    Article  Google Scholar 

  7. Urbina, A.: The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. J. Phys. Energy 2(2), 022001 (2020). https://doi.org/10.1088/2515-7655/ab5eee

    Article  MathSciNet  Google Scholar 

  8. Parisi, M.L.; Maranghi, S.; Vesce, L.; Sinicropi, A.; Di Carlo, A.; Basosi, R.: Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: a long-term scenario approach. Renew. Sustain. Energy Rev. 121, 109703 (2020). https://doi.org/10.1016/j.rser.2020.109703

    Article  Google Scholar 

  9. Mansour, A.M.; Yahia, I.S.; Radaf, I.M.E.: Structural, electrical and photovoltaic properties of PbSb2S5/n-Si heterojunction synthesized by vacuum coating technique. Mater. Res. Express 5(7), 076406 (2018). https://doi.org/10.1088/2053-1591/aad15b

    Article  Google Scholar 

  10. Farag, A.A.M.; Mansour, A.M.; Ammar, A.H.; Rafea, M.A.: Characterization of electrical and optical absorption of organic based methyl orange for photovoltaic application. Synth. Met. 161(19), 2135–2143 (2011). https://doi.org/10.1016/j.synthmet.2011.08.015

    Article  Google Scholar 

  11. Radaf, I.M.E.; Nasr, M.; Mansour, A.M.: Structural, electrical and photovoltaic properties of CoS/Si heterojunction prepared by spray pyrolysis. Mater. Res. Express 5(1), 015904 (2018). https://doi.org/10.1088/2053-1591/aaa25e

    Article  Google Scholar 

  12. Radaf, I.M.E.; Mansour, A.M.; Sakr, G.B.: Fabrication, electrical and photovoltaic characteristics of CuInGeSe4/n-Si diode. J. Semicond. 39(12), 124010 (2018). https://doi.org/10.1088/1674-4926/39/12/124010

    Article  Google Scholar 

  13. Mondal, S.; Manna, A.S.; Maiti, D.K.: Chapter 15 - Nanotools and devices in solar power energy’. In: Devasahayam, S.; Hussain, C.M. (Eds.) Micro and nano technologies, pp. 429–446. Elsevier, Amsterdam (2021). https://doi.org/10.1016/B978-0-12-821709-2.00012-8

    Chapter  Google Scholar 

  14. Abboudi, H.; El Ghazi, H.; Benhaddou, F.; En-Nadir, R.; Jorio, A.; Zorkani, I.: Temperature-related photovoltaic characteristics of (In, Ga)N single-intermediate band quantum well solar cells for different shapes. Phys. B Condens. Matter 626, 413495 (2022). https://doi.org/10.1016/j.physb.2021.413495

    Article  Google Scholar 

  15. Snaith, H.J.: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013). https://doi.org/10.1021/jz4020162

    Article  Google Scholar 

  16. Kinsey, G. S.: Solar cell efficiency divergence due to operating spectrum variation’, Sol. Energy, vol. 217, pp. 49–57, 2021, Accessed: Nov. 26, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0038092X21000402

  17. Green, M.A., et al.: Solar cell efficiency tables (Version 60). Prog. Photovolt. Res. Appl. 30(7), 687–701 (2022). https://doi.org/10.1002/pip.3595

    Article  Google Scholar 

  18. Shiratori, Y.; Miyajima, S.: Characterization of sputtered nanocrystalline gallium nitride for electron selective contact of crystalline silicon solar cell. Thin Solid Films 763, 139582 (2022). https://doi.org/10.1016/j.tsf.2022.139582

    Article  Google Scholar 

  19. Sheu, J.-K., et al.: Demonstration of GaN-based solar cells with gan/ingan superlattice absorption layers. IEEE Electron Device Lett. 30(3), 225–227 (2009). https://doi.org/10.1109/LED.2008.2012275

    Article  Google Scholar 

  20. Ku, P.-C., et al.: Slow light in semiconductor quantum wells. Opt. Lett. 29(19), 2291–2293 (2004)

    Article  Google Scholar 

  21. Laref, A.; Altujar, A.; Luo, S.J.: The electronic and optical properties of InGaN-based solar cells alloys: first-principles investigations via mBJLDA approach. Eur. Phys. J. B. 86(11), 475 (2013). https://doi.org/10.1140/epjb/e2013-40487-2

    Article  Google Scholar 

  22. Fabien, C.A.M.; Doolittle, W.A.: Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells. Sol. Energy Mater. Sol. Cells 130, 354–363 (2014). https://doi.org/10.1016/j.solmat.2014.07.018

    Article  Google Scholar 

  23. A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, ‘Design and Simulation of InGaN p-n Junction Solar Cell’, 2015. Accessed: Nov. 26, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Design-and-Simulation-of-InGaN-p-n-Junction-Solar-Mesrane-Rahmoune/9d1ad1123609e032c54576697d616af80cef3b1c

  24. R. En-nadir et al. 2022 ‘Intrasubband-related linear and nonlinear optical absorption in single, double and triple QW: the compositions, temperature and QW’s number effects’, Philos. Mag., pp. 1–14, 2022.

  25. En-nadir, R., et al.: Enhancing emission via radiative lifetime manipulation in ultrathin InGaN/GaN quantum wells: the effects of simultaneous electric and magnetic fields, thickness, and Impurity’. Nanomaterials (2023). https://doi.org/10.3390/nano13212817

    Article  Google Scholar 

  26. En-nadir, R., et al.: Exploring the electronic properties of shallow donor impurities in modified ∩-shaped potential: effects of applied electric field, parabolicity, compositions, and thickness. Eur. Phys. J. B. 96, 78 (2023). https://doi.org/10.1140/epjb/s10051-023-00539-6

    Article  Google Scholar 

  27. Kucukgok, B.; Wu, X.; Wang, X.; Liu, Z.; Ferguson, I.T.; Lu, N.: The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior. AIP Adv. 6(2), 025305 (2016). https://doi.org/10.1063/1.4941934

    Article  Google Scholar 

  28. En-nadir, R.; Kabatas, M.A.B.-M.; Tihtih, M.; Ghazi, H.E.: Linear and nonlinear optical absorption coefficients in InGaN/GaN quantum wells: Interplay between intense laser field and higher-order anharmonic potentials. Heliyon (2023). https://doi.org/10.1016/j.heliyon.2023.e22867

    Article  Google Scholar 

  29. Shockley, W.: The Shockley-Queisser limit. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  Google Scholar 

  30. Henry, C.H.: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51(8), 4494–4500 (2008). https://doi.org/10.1063/1.328272

    Article  Google Scholar 

  31. Manzoor, H.U.; Zawawi, M.A.M.; Pakhuruddin, M.Z.; Ng, S.S.; Hassan, Z.: High conversion and quantum efficiency indium-rich p-InGaN/p-InGaN/n-InGaN solar cell. Phys. B Condens. Matter 622, 413339 (2021). https://doi.org/10.1016/j.physb.2021.413339

    Article  Google Scholar 

  32. Zhao, Y., et al.: Toward high efficiency at high temperatures: recent progress and prospects on InGaN-Based solar cells. Mater. Today Energy 31, 101229 (2023). https://doi.org/10.1016/j.mtener.2022.101229

    Article  Google Scholar 

  33. Routray, S.R.; Lenka, T.R.: InGaN-based solar cells: a wide solar spectrum harvesting technology for twenty-first century. CSI Trans. ICT 6(1), 83–96 (2018). https://doi.org/10.1007/s40012-017-0181-9

    Article  Google Scholar 

  34. Cherif, F.E.; Sammouda, H.: Strategies for high performance perovskite/c-Si tandem solar cells: effects of bandgap engineering, solar concentration and device temperature. Opt. Mater. 106, 109935 (2020). https://doi.org/10.1016/j.optmat.2020.109935

    Article  Google Scholar 

  35. Madi, L.; Bouchama, I.; Bouarissa, N.: Effect of light wavelengths on the non-polar InGaN-based thin film solar cells performances using one-dimensional modeling. J. Sci. Adv. Mater. Devices 4(4), 509–514 (2019). https://doi.org/10.1016/j.jsamd.2019.08.008

    Article  Google Scholar 

  36. Wang, Z.; Zhang, H.; Dou, B.; Zhang, G.H.; Wu, W.: Theoretical and experimental evaluation on the electrical properties of multi-junction solar cells in a reflective concentration photovoltaic system. Energy Rep. 8, 820–831 (2022). https://doi.org/10.1016/j.egyr.2021.12.018

    Article  Google Scholar 

  37. Algora, C.; Rey-Stolle, I.: The interest and potential of ultra-high concentration. Gener. Photovolt. New Concepts 165, 23 (2012). https://doi.org/10.1007/978-3-642-23369-2_2

    Article  Google Scholar 

  38. Paquette, B.; Boucherif, A.; Aimez, V.; Arès, R.: Novel multijunction solar cell design for low cost, high concentration systems. Prog. Photovolt. Res. Appl. 24(2), 150–158 (2016). https://doi.org/10.1002/pip.2646

    Article  Google Scholar 

  39. Shanks, K., et al.: A >3000 suns high concentrator photovoltaic design based on multiple Fresnel lens primaries focusing to one central solar cell. Sol. Energy 169, 457–467 (2018). https://doi.org/10.1016/j.solener.2018.05.016

    Article  Google Scholar 

  40. Vossier, A.; Zeitouny, J.; Katz, E.A.; Dollet, A.; Flamant, G.; Gordon, J.M.: Performance bounds and perspective for hybrid solar photovoltaic/thermal electricity-generation strategies. Sustain. Energy Fuels 2(9), 2060–2067 (2018). https://doi.org/10.1039/C8SE00046H

    Article  Google Scholar 

  41. Valera, A.; Fernández, E.F.; Rodrigo, P.M.; Almonacid, F.: Feasibility of flat-plate heat-sinks using microscale solar cells up to 10,000 suns concentrations. Sol. Energy 181, 361–371 (2019). https://doi.org/10.1016/j.solener.2019.02.013

    Article  Google Scholar 

  42. Yang, C.-C., et al.: Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration. Opt. Express 19(104), A695–A700 (2011). https://doi.org/10.1364/OE.19.00A695

    Article  Google Scholar 

  43. Moses, G.; Huang, X.; Zhao, Y.; Auf der Maur, M.; Katz, E.A.; Gordon, J.M.: InGaN/GaN multi-quantum-well solar cells under high solar concentration and elevated temperatures for hybrid solar thermal-photovoltaic power plants. Prog. Photovolt. Res. Appl. 28(11), 1167–1174 (2020). https://doi.org/10.1002/pip.3326

    Article  Google Scholar 

  44. El Ghazi, H.; Ramazan, Y.E.: Indium content, doping and thickness related impacts on nonpolar (In, Ga)N solar cell performance: Numerical investigation. Solid State Commun. 373–374, 115341 (2023). https://doi.org/10.1016/j.ssc.2023.115341

    Article  Google Scholar 

  45. Sogabe, T., et al.: High-efficiency InAs/GaAs quantum dot intermediate band solar cell achieved through current constraint engineering. Mater. 1(2), 100013 (2023). https://doi.org/10.1016/j.nxmate.2023.100013

    Article  Google Scholar 

  46. Gray, J.L.: ‘The Physics of the Solar Cell. In: Handbook of Photovoltaic Science and Engineering, pp. 61–112. Wiley, Amstredam (2003). https://doi.org/10.1002/0470014008.ch3

    Chapter  Google Scholar 

  47. Luque, A.; Martí, A.: Theoretical limits of photovoltaic conversion’. In: Handbook of photovoltaic science and engineering, pp. 113–151. Wiley, Amsterdam (2003). https://doi.org/10.1002/0470014008.ch4

    Chapter  Google Scholar 

  48. En-nadir, R.; El Ghazi, H.; Belaid, W.; Jorio, A.; Zorkani, I.: Intraconduction band-related optical absorption in coupled (In, Ga)N/GaN double parabolic quantum wells under temperature, coupling and composition effects. Results Opt. 5, 100154 (2021). https://doi.org/10.1016/j.rio.2021.100154

    Article  Google Scholar 

  49. El Ghazi, H.; En-nadir, R.; Abboudi, H.; Jabouti, F.; Jorio, A.; Zorkani, I.: Two-dimensional electron gas modeling in strained InN/GaN hetero-interface under pressure and impurity effects. Phys. B Condens. Matter 582, 411951 (2020). https://doi.org/10.1016/j.physb.2019.411951

    Article  Google Scholar 

  50. En-nadir, R.; El-ghazi, H.: Theoretical study of ISB conduction optical absorption and impurity binding energy associated with lowest excited states in QW with a new modulated potential. J. Theor. Appl. Phys. (2023). https://doi.org/10.30495/jtap.172317

    Article  Google Scholar 

  51. Belaid, W.; El Ghazi, H.; En-Nadir, R.; Kılıç, H.Ş; Zorkani, I.; Jorio, A.: Temperature-related electronic low-lying states in different shapes In. 1Ga. 9N/GaN double quantum wells under size effects. Trends Sci. 19(17), 5777–5777 (2022)

    Article  Google Scholar 

  52. Riordan, C.; Hulstron, R.: What is an air mass 1.5 spectrum? (solar cell performance calculations)’, In: IEEE Conf. Photovolt. Spec., pp. 1085–1088, 1990, doi https://doi.org/10.1109/PVSC.1990.111784.

  53. ‘Reference Air Mass 1.5 Spectra | Grid Modernization | NREL’. Accessed: Nov. 26, 2023. [Online]. Available: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html

  54. ‘Reference Air Mass 1.5 Spectra’. Accessed: Nov. 26, 2023. [Online]. Available: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html

  55. Sites, J.R.: Calculation of impact ionization enhanced photovoltaic efficiency. Sol. Cells 25(2), 163–168 (1988). https://doi.org/10.1016/0379-6787(88)90020-8

    Article  Google Scholar 

  56. D. Qingwen et al., ‘Theoretical study on In {sub x} Ga {sub 1-x} N/GaN quantum dots solar cell’, Phys. B Condens. Matter, vol. 406, 2011.

  57. Jani, O.; Ferguson, I.; Honsberg, C.; Kurtz, S.: Design and characterization of GaN∕InGaN solar cells. Appl. Phys. Lett. 91(13), 132117 (2007). https://doi.org/10.1063/1.2793180

    Article  Google Scholar 

  58. Walukiewicz, W., et al.: Structure and electronic properties of InN and In-rich group III-nitride alloys. J. Phys. Appl. Phys. 39(5), R83 (2006). https://doi.org/10.1088/0022-3727/39/5/R01

    Article  Google Scholar 

  59. Nanishi, Y.; Saito, Y.; Yamaguchi, T.: RF-molecular beam epitaxy growth and properties of InN and related alloys. Jpn. J. Appl. Phys. 42(5R), 2549 (2003). https://doi.org/10.1143/JJAP.42.2549

    Article  Google Scholar 

  60. En-nadir, R.; Ghazi, H.E.; Belaid, W.; Jorio, A.; Zorkani, I.; Kiliç, H.Ş: Ground and first five low-lying excited states related optical absorption in In.1Ga.9N/GaN double quantum wells: temperature and coupling impacts. Solid State Commun. 338, 114464 (2021). https://doi.org/10.1016/j.ssc.2021.114464

    Article  Google Scholar 

  61. Megantoro, P.; Syahbani, M.A.; Sukmawan, I.H.; Perkasa, S.D.; Vigneshwaran, P.: Effect of peak sun hour on energy productivity of solar photovoltaic power system. Bull. Electr. Eng. Inform. (2022). https://doi.org/10.11591/eei.v11i5.3962

    Article  Google Scholar 

  62. Kowsar, A.; Farhad, S.F.U.; Sakib, S.: Effect of the bandgap, sun concentration and surface recombination velocity on the performance of a III-V bismide multijunction solar cells. Int. J. Renew. Energy Res. 8, 2218–2227 (2018)

    Google Scholar 

  63. Outes, C.; Fernández, E.F.; Seoane, N.; Almonacid, F.; García-Loureiro, A.J.: Numerical optimisation and recombination effects on the vertical-tunnel-junction (VTJ) GaAs solar cell up to 10,000 suns. Sol. Energy 203, 136–144 (2020). https://doi.org/10.1016/j.solener.2020.04.029

    Article  Google Scholar 

  64. Steiner, M.; Philipps, S.P.; Hermle, M.; Bett, A.W.; Dimroth, F.: Validated front contact grid simulation for GaAs solar cells under concentrated sunlight. Prog. Photovolt. Res. Appl. 19(1), 73–83 (2011). https://doi.org/10.1002/pip.989

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude for the financial support received from the National Center for Scientific and Technical Research (CNRST: Morocco) and the Scientific and Technological Research Institution (TÜBİTAK: Turkey) through the bilateral project CNRST/TÜBİTAK for the period of 2023–2025.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HEG conceptualized and discussed the idea presented. YER, RE, and HEG jointly developed the theoretical framework and conducted the necessary calculations. They verified the programming, implemented the computer code, and oversaw the integration of supporting code components. Additionally, they provided supervision throughout the process of obtaining results. HEG, REN, and YER actively contributed to the implementation of the research, analyzed the obtained results, and participated in the writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Haddou El Ghazi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazi, H.E., Ramazan, Y.E. & En-nadir, R. Numerical Analysis of InGaN/GaN Intermediate Band Solar Cells Under X-sun Concentration, In-compositions, and Doping: Unlocking the Potential of Concentrated Photovoltaics. Arab J Sci Eng 49, 9885–9894 (2024). https://doi.org/10.1007/s13369-023-08645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08645-4

Keywords

Navigation