Abstract
Our research focuses on advancing solar energy through the study of nano- and microelectronic structures. Using the finite element method, we analyze key characteristics of InGaN/GaN intermediate band solar cells (IBSC), including refractive index, absorption coefficient, short-circuit current, open-circuit voltage, fill factor, and efficiency with a focus on the X-sun concentration effect. We assess nonpolar solar cell performance at room temperature and incorporate experimental data from American Society for Testing and Materials (ASTM), encompassing AM1.5D, AM1.5G, and AM0, to analyze refractive and absorption spectra. Investigating constraints on solar cell efficiency, we find that under AM1.5G spectra, the short-circuit current is higher compared to AM1.5D and AM0. Additionally, open-circuit voltage, fill factor, and efficiency increase significantly with elevated X-sun concentration and doping. Our analysis of ASTM data indicates that InGaN-based IBSC are efficiently able to absorb the visible spectrum and withstand intense X-sun concentration, making them suitable for concentrated photovoltaic technology.
Similar content being viewed by others
Data Availability
The numerical data utilized in this study are available upon request. The data associated with the manuscript is provided in the form of a Python file (file.py).
References
R. and M. ltd, ‘Solar Energy Market By Technology, By Solar Module, By Application, By End-Use: Global Opportunity Analysis and Industry Forecast, 2023–2032’. Accessed: Jul. 30, 2023. [Online]. Available: https://www.researchandmarkets.com/reports/4989453/solar-energy-market-by-technology-by-solar
‘Global cumulative installed solar PV capacity 2022’, Statista. Accessed: Nov. 26, 2023. [Online]. Available: https://www.statista.com/statistics/280220/global-cumulative-installed-solar-pv-capacity/
Vidal, R.; Alberola-Borràs, J.-A.; Sánchez-Pantoja, N.; Mora-Seró, I.: Comparison of perovskite solar cells with other photovoltaics technologies from the point of view of life cycle assessment. Adv. Energy Sustain. Res. 2(5), 2000088 (2021). https://doi.org/10.1002/aesr.202000088
Guo, J.; Min, J.: A cost analysis of fully solution-processed ITO-free organic solar modules. Adv. Energy Mater. 9(3), 1802521 (2019). https://doi.org/10.1002/aenm.201802521
Moon, S.; Kim, K.; Kim, Y.; Heo, J.; Lee, J.: Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. (2016). https://doi.org/10.1038/srep30107
Feltrin, A.; Freundlich, A.: Material considerations for terawatt level deployment of photovoltaics. Renew. Energy 33(2), 180–185 (2008). https://doi.org/10.1016/j.renene.2007.05.024
Urbina, A.: The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. J. Phys. Energy 2(2), 022001 (2020). https://doi.org/10.1088/2515-7655/ab5eee
Parisi, M.L.; Maranghi, S.; Vesce, L.; Sinicropi, A.; Di Carlo, A.; Basosi, R.: Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: a long-term scenario approach. Renew. Sustain. Energy Rev. 121, 109703 (2020). https://doi.org/10.1016/j.rser.2020.109703
Mansour, A.M.; Yahia, I.S.; Radaf, I.M.E.: Structural, electrical and photovoltaic properties of PbSb2S5/n-Si heterojunction synthesized by vacuum coating technique. Mater. Res. Express 5(7), 076406 (2018). https://doi.org/10.1088/2053-1591/aad15b
Farag, A.A.M.; Mansour, A.M.; Ammar, A.H.; Rafea, M.A.: Characterization of electrical and optical absorption of organic based methyl orange for photovoltaic application. Synth. Met. 161(19), 2135–2143 (2011). https://doi.org/10.1016/j.synthmet.2011.08.015
Radaf, I.M.E.; Nasr, M.; Mansour, A.M.: Structural, electrical and photovoltaic properties of CoS/Si heterojunction prepared by spray pyrolysis. Mater. Res. Express 5(1), 015904 (2018). https://doi.org/10.1088/2053-1591/aaa25e
Radaf, I.M.E.; Mansour, A.M.; Sakr, G.B.: Fabrication, electrical and photovoltaic characteristics of CuInGeSe4/n-Si diode. J. Semicond. 39(12), 124010 (2018). https://doi.org/10.1088/1674-4926/39/12/124010
Mondal, S.; Manna, A.S.; Maiti, D.K.: Chapter 15 - Nanotools and devices in solar power energy’. In: Devasahayam, S.; Hussain, C.M. (Eds.) Micro and nano technologies, pp. 429–446. Elsevier, Amsterdam (2021). https://doi.org/10.1016/B978-0-12-821709-2.00012-8
Abboudi, H.; El Ghazi, H.; Benhaddou, F.; En-Nadir, R.; Jorio, A.; Zorkani, I.: Temperature-related photovoltaic characteristics of (In, Ga)N single-intermediate band quantum well solar cells for different shapes. Phys. B Condens. Matter 626, 413495 (2022). https://doi.org/10.1016/j.physb.2021.413495
Snaith, H.J.: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013). https://doi.org/10.1021/jz4020162
Kinsey, G. S.: Solar cell efficiency divergence due to operating spectrum variation’, Sol. Energy, vol. 217, pp. 49–57, 2021, Accessed: Nov. 26, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0038092X21000402
Green, M.A., et al.: Solar cell efficiency tables (Version 60). Prog. Photovolt. Res. Appl. 30(7), 687–701 (2022). https://doi.org/10.1002/pip.3595
Shiratori, Y.; Miyajima, S.: Characterization of sputtered nanocrystalline gallium nitride for electron selective contact of crystalline silicon solar cell. Thin Solid Films 763, 139582 (2022). https://doi.org/10.1016/j.tsf.2022.139582
Sheu, J.-K., et al.: Demonstration of GaN-based solar cells with gan/ingan superlattice absorption layers. IEEE Electron Device Lett. 30(3), 225–227 (2009). https://doi.org/10.1109/LED.2008.2012275
Ku, P.-C., et al.: Slow light in semiconductor quantum wells. Opt. Lett. 29(19), 2291–2293 (2004)
Laref, A.; Altujar, A.; Luo, S.J.: The electronic and optical properties of InGaN-based solar cells alloys: first-principles investigations via mBJLDA approach. Eur. Phys. J. B. 86(11), 475 (2013). https://doi.org/10.1140/epjb/e2013-40487-2
Fabien, C.A.M.; Doolittle, W.A.: Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells. Sol. Energy Mater. Sol. Cells 130, 354–363 (2014). https://doi.org/10.1016/j.solmat.2014.07.018
A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, ‘Design and Simulation of InGaN p-n Junction Solar Cell’, 2015. Accessed: Nov. 26, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Design-and-Simulation-of-InGaN-p-n-Junction-Solar-Mesrane-Rahmoune/9d1ad1123609e032c54576697d616af80cef3b1c
R. En-nadir et al. 2022 ‘Intrasubband-related linear and nonlinear optical absorption in single, double and triple QW: the compositions, temperature and QW’s number effects’, Philos. Mag., pp. 1–14, 2022.
En-nadir, R., et al.: Enhancing emission via radiative lifetime manipulation in ultrathin InGaN/GaN quantum wells: the effects of simultaneous electric and magnetic fields, thickness, and Impurity’. Nanomaterials (2023). https://doi.org/10.3390/nano13212817
En-nadir, R., et al.: Exploring the electronic properties of shallow donor impurities in modified ∩-shaped potential: effects of applied electric field, parabolicity, compositions, and thickness. Eur. Phys. J. B. 96, 78 (2023). https://doi.org/10.1140/epjb/s10051-023-00539-6
Kucukgok, B.; Wu, X.; Wang, X.; Liu, Z.; Ferguson, I.T.; Lu, N.: The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior. AIP Adv. 6(2), 025305 (2016). https://doi.org/10.1063/1.4941934
En-nadir, R.; Kabatas, M.A.B.-M.; Tihtih, M.; Ghazi, H.E.: Linear and nonlinear optical absorption coefficients in InGaN/GaN quantum wells: Interplay between intense laser field and higher-order anharmonic potentials. Heliyon (2023). https://doi.org/10.1016/j.heliyon.2023.e22867
Shockley, W.: The Shockley-Queisser limit. J. Appl. Phys. 32(3), 510–519 (1961)
Henry, C.H.: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51(8), 4494–4500 (2008). https://doi.org/10.1063/1.328272
Manzoor, H.U.; Zawawi, M.A.M.; Pakhuruddin, M.Z.; Ng, S.S.; Hassan, Z.: High conversion and quantum efficiency indium-rich p-InGaN/p-InGaN/n-InGaN solar cell. Phys. B Condens. Matter 622, 413339 (2021). https://doi.org/10.1016/j.physb.2021.413339
Zhao, Y., et al.: Toward high efficiency at high temperatures: recent progress and prospects on InGaN-Based solar cells. Mater. Today Energy 31, 101229 (2023). https://doi.org/10.1016/j.mtener.2022.101229
Routray, S.R.; Lenka, T.R.: InGaN-based solar cells: a wide solar spectrum harvesting technology for twenty-first century. CSI Trans. ICT 6(1), 83–96 (2018). https://doi.org/10.1007/s40012-017-0181-9
Cherif, F.E.; Sammouda, H.: Strategies for high performance perovskite/c-Si tandem solar cells: effects of bandgap engineering, solar concentration and device temperature. Opt. Mater. 106, 109935 (2020). https://doi.org/10.1016/j.optmat.2020.109935
Madi, L.; Bouchama, I.; Bouarissa, N.: Effect of light wavelengths on the non-polar InGaN-based thin film solar cells performances using one-dimensional modeling. J. Sci. Adv. Mater. Devices 4(4), 509–514 (2019). https://doi.org/10.1016/j.jsamd.2019.08.008
Wang, Z.; Zhang, H.; Dou, B.; Zhang, G.H.; Wu, W.: Theoretical and experimental evaluation on the electrical properties of multi-junction solar cells in a reflective concentration photovoltaic system. Energy Rep. 8, 820–831 (2022). https://doi.org/10.1016/j.egyr.2021.12.018
Algora, C.; Rey-Stolle, I.: The interest and potential of ultra-high concentration. Gener. Photovolt. New Concepts 165, 23 (2012). https://doi.org/10.1007/978-3-642-23369-2_2
Paquette, B.; Boucherif, A.; Aimez, V.; Arès, R.: Novel multijunction solar cell design for low cost, high concentration systems. Prog. Photovolt. Res. Appl. 24(2), 150–158 (2016). https://doi.org/10.1002/pip.2646
Shanks, K., et al.: A >3000 suns high concentrator photovoltaic design based on multiple Fresnel lens primaries focusing to one central solar cell. Sol. Energy 169, 457–467 (2018). https://doi.org/10.1016/j.solener.2018.05.016
Vossier, A.; Zeitouny, J.; Katz, E.A.; Dollet, A.; Flamant, G.; Gordon, J.M.: Performance bounds and perspective for hybrid solar photovoltaic/thermal electricity-generation strategies. Sustain. Energy Fuels 2(9), 2060–2067 (2018). https://doi.org/10.1039/C8SE00046H
Valera, A.; Fernández, E.F.; Rodrigo, P.M.; Almonacid, F.: Feasibility of flat-plate heat-sinks using microscale solar cells up to 10,000 suns concentrations. Sol. Energy 181, 361–371 (2019). https://doi.org/10.1016/j.solener.2019.02.013
Yang, C.-C., et al.: Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration. Opt. Express 19(104), A695–A700 (2011). https://doi.org/10.1364/OE.19.00A695
Moses, G.; Huang, X.; Zhao, Y.; Auf der Maur, M.; Katz, E.A.; Gordon, J.M.: InGaN/GaN multi-quantum-well solar cells under high solar concentration and elevated temperatures for hybrid solar thermal-photovoltaic power plants. Prog. Photovolt. Res. Appl. 28(11), 1167–1174 (2020). https://doi.org/10.1002/pip.3326
El Ghazi, H.; Ramazan, Y.E.: Indium content, doping and thickness related impacts on nonpolar (In, Ga)N solar cell performance: Numerical investigation. Solid State Commun. 373–374, 115341 (2023). https://doi.org/10.1016/j.ssc.2023.115341
Sogabe, T., et al.: High-efficiency InAs/GaAs quantum dot intermediate band solar cell achieved through current constraint engineering. Mater. 1(2), 100013 (2023). https://doi.org/10.1016/j.nxmate.2023.100013
Gray, J.L.: ‘The Physics of the Solar Cell. In: Handbook of Photovoltaic Science and Engineering, pp. 61–112. Wiley, Amstredam (2003). https://doi.org/10.1002/0470014008.ch3
Luque, A.; Martí, A.: Theoretical limits of photovoltaic conversion’. In: Handbook of photovoltaic science and engineering, pp. 113–151. Wiley, Amsterdam (2003). https://doi.org/10.1002/0470014008.ch4
En-nadir, R.; El Ghazi, H.; Belaid, W.; Jorio, A.; Zorkani, I.: Intraconduction band-related optical absorption in coupled (In, Ga)N/GaN double parabolic quantum wells under temperature, coupling and composition effects. Results Opt. 5, 100154 (2021). https://doi.org/10.1016/j.rio.2021.100154
El Ghazi, H.; En-nadir, R.; Abboudi, H.; Jabouti, F.; Jorio, A.; Zorkani, I.: Two-dimensional electron gas modeling in strained InN/GaN hetero-interface under pressure and impurity effects. Phys. B Condens. Matter 582, 411951 (2020). https://doi.org/10.1016/j.physb.2019.411951
En-nadir, R.; El-ghazi, H.: Theoretical study of ISB conduction optical absorption and impurity binding energy associated with lowest excited states in QW with a new modulated potential. J. Theor. Appl. Phys. (2023). https://doi.org/10.30495/jtap.172317
Belaid, W.; El Ghazi, H.; En-Nadir, R.; Kılıç, H.Ş; Zorkani, I.; Jorio, A.: Temperature-related electronic low-lying states in different shapes In. 1Ga. 9N/GaN double quantum wells under size effects. Trends Sci. 19(17), 5777–5777 (2022)
Riordan, C.; Hulstron, R.: What is an air mass 1.5 spectrum? (solar cell performance calculations)’, In: IEEE Conf. Photovolt. Spec., pp. 1085–1088, 1990, doi https://doi.org/10.1109/PVSC.1990.111784.
‘Reference Air Mass 1.5 Spectra | Grid Modernization | NREL’. Accessed: Nov. 26, 2023. [Online]. Available: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
‘Reference Air Mass 1.5 Spectra’. Accessed: Nov. 26, 2023. [Online]. Available: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
Sites, J.R.: Calculation of impact ionization enhanced photovoltaic efficiency. Sol. Cells 25(2), 163–168 (1988). https://doi.org/10.1016/0379-6787(88)90020-8
D. Qingwen et al., ‘Theoretical study on In {sub x} Ga {sub 1-x} N/GaN quantum dots solar cell’, Phys. B Condens. Matter, vol. 406, 2011.
Jani, O.; Ferguson, I.; Honsberg, C.; Kurtz, S.: Design and characterization of GaN∕InGaN solar cells. Appl. Phys. Lett. 91(13), 132117 (2007). https://doi.org/10.1063/1.2793180
Walukiewicz, W., et al.: Structure and electronic properties of InN and In-rich group III-nitride alloys. J. Phys. Appl. Phys. 39(5), R83 (2006). https://doi.org/10.1088/0022-3727/39/5/R01
Nanishi, Y.; Saito, Y.; Yamaguchi, T.: RF-molecular beam epitaxy growth and properties of InN and related alloys. Jpn. J. Appl. Phys. 42(5R), 2549 (2003). https://doi.org/10.1143/JJAP.42.2549
En-nadir, R.; Ghazi, H.E.; Belaid, W.; Jorio, A.; Zorkani, I.; Kiliç, H.Ş: Ground and first five low-lying excited states related optical absorption in In.1Ga.9N/GaN double quantum wells: temperature and coupling impacts. Solid State Commun. 338, 114464 (2021). https://doi.org/10.1016/j.ssc.2021.114464
Megantoro, P.; Syahbani, M.A.; Sukmawan, I.H.; Perkasa, S.D.; Vigneshwaran, P.: Effect of peak sun hour on energy productivity of solar photovoltaic power system. Bull. Electr. Eng. Inform. (2022). https://doi.org/10.11591/eei.v11i5.3962
Kowsar, A.; Farhad, S.F.U.; Sakib, S.: Effect of the bandgap, sun concentration and surface recombination velocity on the performance of a III-V bismide multijunction solar cells. Int. J. Renew. Energy Res. 8, 2218–2227 (2018)
Outes, C.; Fernández, E.F.; Seoane, N.; Almonacid, F.; García-Loureiro, A.J.: Numerical optimisation and recombination effects on the vertical-tunnel-junction (VTJ) GaAs solar cell up to 10,000 suns. Sol. Energy 203, 136–144 (2020). https://doi.org/10.1016/j.solener.2020.04.029
Steiner, M.; Philipps, S.P.; Hermle, M.; Bett, A.W.; Dimroth, F.: Validated front contact grid simulation for GaAs solar cells under concentrated sunlight. Prog. Photovolt. Res. Appl. 19(1), 73–83 (2011). https://doi.org/10.1002/pip.989
Acknowledgements
We would like to express our sincere gratitude for the financial support received from the National Center for Scientific and Technical Research (CNRST: Morocco) and the Scientific and Technological Research Institution (TÜBİTAK: Turkey) through the bilateral project CNRST/TÜBİTAK for the period of 2023–2025.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
HEG conceptualized and discussed the idea presented. YER, RE, and HEG jointly developed the theoretical framework and conducted the necessary calculations. They verified the programming, implemented the computer code, and oversaw the integration of supporting code components. Additionally, they provided supervision throughout the process of obtaining results. HEG, REN, and YER actively contributed to the implementation of the research, analyzed the obtained results, and participated in the writing, reviewing, and editing of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ghazi, H.E., Ramazan, Y.E. & En-nadir, R. Numerical Analysis of InGaN/GaN Intermediate Band Solar Cells Under X-sun Concentration, In-compositions, and Doping: Unlocking the Potential of Concentrated Photovoltaics. Arab J Sci Eng 49, 9885–9894 (2024). https://doi.org/10.1007/s13369-023-08645-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-023-08645-4