Skip to main content
Log in

Soft Computing-Based Models for Estimating the Ultimate Bearing Capacity of an Annular Footing on Hoek–Brown Material

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The finite element limit analysis solution presented in this paper offers novel approaches for estimating the ultimate bearing capacity of annular foundations on Hoek–Brown criterion. The study examines the effects of five of dimensionless parameters, including the ratio of internal to external radii, the depth ratio, the adhesive factor, the yield parameter, and the geological strength index, on the findings of bearing capacity as well as the processes of collapse. Furthermore, one of the soft-computing regression methodologies, the multi-objective evolutionary polynomial regression analysis (MOGA-EPR) method, is utilized along with the requirement of the FELA outcomes as input data. This paper provides accurate limit-state predictions for annular footings on diverse rock masses using the MOGA-EPR model. By using the MOGA-EPR approach, the findings are highly precise and trustworthy, empowering designers to choose the best annular foundation design for various Hoek–Brown material varieties. Moreover, this study extends its scope by encompassing the application of multiple linear regression, multiple nonlinear regression, and artificial neural network models for an extensive comparative analysis. The amalgamation of these models widens the evaluative framework, fostering a more comprehensive exploration of predictive capabilities and insights into the stability assessment of annular footings across rock mass conditions. Through this multifaceted approach, a holistic comprehension emerges, thereby enhancing the decision-making process pertaining to the design of annular foundations within diverse Hoek–Brown material contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

All data, models, and code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hoek, E.; Brown, E.T.: Empirical strength criterion for rock masses. J. Geotech. Eng. Div. 106(9), 1013–1035 (1980)

    Article  Google Scholar 

  2. Hoek, E.; Carranza-Torres, C.; Corkum, B.: Hoek–Brown failure criterion—2002 edition. In: Proceedings of the North American Rock Mechanics Society Meeting in Toronto, Canada (2002)

  3. Serrano, A.; Olalla, C.: Ultimate bearing capacity of rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 31(2), 93–106 (1994)

    Article  Google Scholar 

  4. Serrano, A.; Olalla, C.: Ultimate bearing capacity of an anisotropic discontinuous rock mass, part I: basic modes of failure. Int. J. Rock Mech. Min. Sci. 35(3), 301–324 (1998)

    Article  Google Scholar 

  5. Serrano, A.; Olalla, C.: Ultimate bearing capacity of an anisotropic discontinuous rock mass, part II: determination procedure. Int. J. Rock Mech. Min. Sci. 35(3), 325–348 (1998)

    Article  Google Scholar 

  6. Yang, X.L.; Yin, J.H.: Upper bound solution for ultimate bearing capacity with modified Hoek–Brown failure criterion. Int. J. Rock Mech. Min. Sci. 42, 550–560 (2005)

    Article  Google Scholar 

  7. Merifield, R.S.; Lyamin, A.V.; Sloan, S.W.: Limit analysis solutions for the bearing capacity of rock masses using the generalized Hoek-Brown criterion. Int. J. Rock Mech. Min. Sci. 43(6), 920–937 (2006)

    Article  Google Scholar 

  8. Saada, Z.; Maghous, S.; Garnier, D.: Bearing capacity of shallow foundations on rocks obeying a modified Hoek–Brown failure criterion. Comput. Geotech. 35, 144–154 (2008)

    Article  Google Scholar 

  9. Chihi, O.; Saada, Z.: Bearing capacity of strip footing on rock under inclined and eccentric load using the generalized Hoek–Brown criterion. Eur. J. Environ. Civ. Eng. (2020). https://doi.org/10.1080/19648189.2020.1757513

    Article  Google Scholar 

  10. Keawsawasvong, S.; Thongchom, C.; Likitlersuang, S.: Bearing capacity of strip footing on Hoek–Brown rock mass subjected to eccentric and inclined loading. Transp. Infrastruct. Geotechnol. (2020). https://doi.org/10.1007/s40515-020-00133-8

    Article  Google Scholar 

  11. Clausen, J.: Bearing capacity of circular footings on a Hoek–Brown material. Int. J. Rock Mech. Min. Sci. 57, 34–41 (2013)

    Article  Google Scholar 

  12. Chakraborty, M.; Kumar, J.: Bearing capacity of circular footings over rock mass by using axisymmetric quasi lower bound finite element limit analysis. Comput. Geotech. 70, 138–149 (2015)

    Article  Google Scholar 

  13. Keshavarz, A.; Kumar, J.: Bearing capacity of foundations on rock mass using the method of characteristics. Int. J. Numer. Anal. Meth. Geomech. 42, 542–557 (2018)

    Article  Google Scholar 

  14. Lai, V.Q.; Sangjinda, K.; Keawsawasvong, S.; Eskandarinejad, A.; Chauhan, V.B.; Sae-Long, W.; Limkatanyu, S.: A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load. Front. Built Environ. 8, 962331 (2022)

    Article  Google Scholar 

  15. Ukritchon, B.; Keawsawasvong, S.: Three-dimensional lower bound finite element limit analysis of Hoek–Brown material using semidefinite programming. Comput. Geotech. 104, 248–270 (2018)

    Article  Google Scholar 

  16. Keawsawasvong, S.; Shiau, J.; Limpanawannakul, K.; Panomchaivath, S.: Stability charts for closely spaced strip footings on Hoek–Brown rock mass. Geotech. Geol. Eng. 40, 3051–3066 (2022)

    Article  Google Scholar 

  17. Kumar, J.; Ghosh, P.: Bearing capacity factor Nγ for ring footings using the method of characteristics. Can. Geotech. J. 42, 1474–1484 (2005)

    Article  Google Scholar 

  18. Keshavarz, A.; Kumar, J.: Bearing capacity computation for a ring foundation using the stress characteristics method. Comput. Geotech. 89, 33–42 (2017)

    Article  Google Scholar 

  19. Zhao, L.; Wang, J.H.: Vertical bearing capacity for ring footings. Comput. Geotech. 35, 292–304 (2008)

    Article  Google Scholar 

  20. Benmebarek, S.; Remadna, M.S.; Benmebarek, N.; Belounar, L.: Numerical evaluation of the bearing capacity factor of ring footings. Comput. Geotech. 44, 132–138 (2012)

    Article  Google Scholar 

  21. Kumar, J.; Chakraborty, M.: Bearing capacity factors for ring foundations. J. Geotech. Geoenviron. Eng. 141, 06015007 (2015)

    Article  Google Scholar 

  22. Benmebarek, S.; Saifi, I.; Benmebarek, N.: Undrained vertical bearing capacity factors for ring shallow footings. Geotech. Geol. Eng. 35, 1–10 (2017)

    Article  Google Scholar 

  23. Lee, J.K.; Jeong, S.; Lee, S.: Undrained bearing capacity factors for ring footings in heterogeneous soil. Comput. Geotech. 75, 103–111 (2016)

    Article  Google Scholar 

  24. Lee, J.K.; Jeong, S.; Shang, J.Q.: Undrained bearing capacity of ring foundations on two-layered clays. Ocean Eng. 119, 47–57 (2016)

    Article  Google Scholar 

  25. Yang, C.; Zhu, Z.; Xiao, Y.: Bearing capacity of ring foundations on sand overlying clay. Appl. Sci. 10, 4675 (2020)

    Article  Google Scholar 

  26. Das, P.P.; Khatri, V.N.; Dutta, R.K.: Bearing capacity of ring footing on weak sand layer overlying a dense sand deposit. Geomech. Geoeng. (2019). https://doi.org/10.1080/17486025.2019.1664775

    Article  Google Scholar 

  27. Khatri, V.N.; Kumar, J.; Das, P.P.: Bearing capacity of ring footings placed on dense sand underlain by a loose sand layer. Eur. J. Environ. Civ. Eng. (2020). https://doi.org/10.1080/19648189.2020.1805643

    Article  Google Scholar 

  28. Sharma, V.; Kumar, A.: Strength and bearing capacity of ring footings resting on fibre-reinforced sand. Int. J. Geosynth. Ground Eng. 3, 9 (2017)

    Article  Google Scholar 

  29. Benmebarek, S.; Remadna, A.; Benmebarek, N.: Numerical modelling of stone column installation effects on performance of circular footing. Int. J. Geosynth. Ground Eng. 4, 23 (2018)

    Article  Google Scholar 

  30. Biswas, A.; Ansari, M.A.; Dash, S.K.; Krishna, A.M.: Behavior of geogrid reinforced foundation systems supported on clay subgrades of different strengths. Int. J. Geosynth. Ground Eng. 1, 20 (2015)

    Article  Google Scholar 

  31. Yodsomjai, W.; Keawsawasvong, S.; Lai, Q.V.: Limit analysis solutions for bearing capacity of ring foundations on rocks using Hoek–Brown failure criterion. Int. J. Geosynth. Ground Eng. (2021). https://doi.org/10.1007/s40891-021-00281-y

    Article  Google Scholar 

  32. Xiao, Y.; Zhao, M.; Zhao, H.; Zhang, R.: Numerical study on bearing capacity og ring foundations for storage tanks on a rock mass. Arab. J. Geosci. (2020). https://doi.org/10.1007/s12517-020-06255-0

    Article  Google Scholar 

  33. Sloan, S.W.: Geotechnical stability analysis. Géotechnique 63(7), 531–572 (2013)

    Article  Google Scholar 

  34. Drucker, D.C.; Prager, W.; Greenberg, H.J.: Extended limit design theorems for continuous media. Q. Appl. Math. 9, 381–389 (1952)

    Article  MathSciNet  Google Scholar 

  35. Chen, W.F.: Limit Analysis and Soil Plasticity. Elsevier, Amsterdam (1975)

    Google Scholar 

  36. Krabbenhoft, K.; Lyamin, A.; Krabbenhoft, J. (2015). Optum Computational Engineering (OptumG2), Available on www.optumce.com

  37. Ciria, H.; Peraire, J.; Bonet, J.: Mesh adaptive computation of upper and lower bounds in limit analysis. Int. J. Numer. Methods Eng. 75, 899–944 (2008)

    Article  MathSciNet  Google Scholar 

  38. Keawsawasvong, S.; Ukritchon, B.: Finite element analysis of undrained stability of cantilever flood walls. Int. J. Geotech. Eng. 11(4), 355–367 (2017)

    Article  Google Scholar 

  39. Ukritchon, B.; Keawsawasvong, S.: Unsafe error in conventional shape factor for shallow circular foundations in normally consolidated clays. J. Geotech. Geoenviron. Eng. ASCE 143(6), 02817001 (2017)

    Article  Google Scholar 

  40. Keawsawasvong, S.; Ukritchon, B.: Undrained limiting pressure behind soil gaps in contiguous pile walls. Comput. Geotech. 83, 152–158 (2017)

    Article  Google Scholar 

  41. Keawsawasvong, S.; Ukritchon, B.: Undrained lateral capacity of I-shaped concrete piles. Songklanakarin J. Sci. Technol. 39(6), 751–758 (2017)

    Google Scholar 

  42. Keawsawasvong, S.; Ukritchon, B.: Undrained stability of a spherical cavity in cohesive soils using finite element limit analysis. J. Rock Mech. Geotech. Eng. 11(6), 1274–1285 (2019)

    Article  Google Scholar 

  43. Shiau, J.; Chudal, B.; Mahalingasivam, K.; Keawsawasvong, S.: Pipeline burst-related ground stability in blowout condition. Transp. Geotech. 29, 100587 (2021)

    Article  Google Scholar 

  44. Keawsawasvong, S.; Ukritchon, B.: Design equation for stability of a circular tunnel in an anisotropic and heterogeneous clay. Undergr. Space 7(1), 76–93 (2022)

    Article  Google Scholar 

  45. Keawsawasvong, S.; Shiau, J.; Ngamkhanong, C.; Lai, V.Q.; Thongchom, C.: Undrained stability of ring foundations: axisymmetry, anisotropy, and non-homogeneity. Int. J. Geomech. ASCE 22(1), 04021253 (2022)

    Article  Google Scholar 

  46. Yodsomjai, W.; Keawsawasvong, S.; Likitlersuang, S.: Stability of unsupported conical slopes in Hoek–Brown rock masses. Transp. Infrastruct. Geotechnol. 8, 278–295 (2021)

    Article  Google Scholar 

  47. Giustolisi, O.; Savic, D.A.: Advances in data-driven analyses and modelling using EPR-MOGA. J. Hydroinf. 11(3–4), 225–236 (2009)

    Article  Google Scholar 

  48. Sangjinda, K.; Banyong, R.; Alzabeebee, S.; Keawsawasvong, S.: Developing soft-computing regression model for predicting bearing capacity of eccentrically loaded footings on anisotropic clay. Artif. Intell. Geosci. 4, 68–75 (2023). https://doi.org/10.1016/j.aiig.2023.05.001

    Article  Google Scholar 

  49. Alzabeebee, S.; Alshkane, Y.; Keawsawasvong, S.: New model to predict bearing capacity of shallow foundations resting on cohesionless soil. Geotech. Geol. Eng. (2023). https://doi.org/10.1007/s10706-023-02472-y

    Article  Google Scholar 

  50. Alzabeebee, S.; Keawsawasvong, S.: Robust models to predict the secondary compression index of fine-grained soils using multi objective evolutionary polynomial regression analysis. Model. Earth Syst. Environ. (2023). https://doi.org/10.1007/s40808-023-01778-3

    Article  Google Scholar 

  51. Alzabeebee, S.; Mohammed, D.A.; Alshkane, Y.M.: Experimental study and soft computing modeling of the unconfined compressive strength of limestone rocks considering dry and saturation conditions. Rock Mech. Rock Eng. (2022). https://doi.org/10.1007/s00603-022-02948-y

    Article  Google Scholar 

  52. Mohammadi, M.; Fatemi Aghda, S.M.; Talkhablou, M.; Cheshomi, A.: Prediction of the shear strength parameters from easily-available soil properties by means of multivariate regression and artificial neural network methods. Geomech. Geoeng. 17(2), 442–454 (2022)

    Article  Google Scholar 

  53. Torabi-Kaveh, M.; Naseri, F.; Saneie, S.; Sarshari, B.: Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab. J. Geosci. 8, 2889–2897 (2015)

    Article  Google Scholar 

  54. Jitchaijaroen, W.; Wipulanusat, W.; Keawsawasvong, S.; Chavda, J.T.; Ramjan, S.; Sunkpho, J.: Stability evaluation of elliptical tunnels in natural clays by integrating FELA and ANN. Results Eng. 19, 101280 (2023)

    Article  Google Scholar 

  55. Lai, V.Q.; Jitchaijaroen, W.; Keawsawasvong, S.; Chavda, J.T.; Sae-Long, W.; Limkatanyu, S.: Application of ANN and FELA for predicting bearing capacity of shell foundations on sand. Int. J. Geosynth. Ground Eng. 9(2), 18 (2023)

    Article  Google Scholar 

  56. Yilmaz, I.; Kaynar, O.: Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst. Appl. 38(5), 5958–5966 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation under Research Grant for New Scholar (RGNS 65-112).

Funding

This research was funded by National Science, Research and Innovation Fund (NSRF), and King Mongkut’s University of Technology North Bangkok with Contract no. KMUTNB-FF-66-27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raksiri Sukkarak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keawsawasvong, S., Sangjinda, K., Jitchaijaroen, W. et al. Soft Computing-Based Models for Estimating the Ultimate Bearing Capacity of an Annular Footing on Hoek–Brown Material. Arab J Sci Eng 49, 5989–6006 (2024). https://doi.org/10.1007/s13369-023-08588-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08588-w

Keywords

Navigation