Skip to main content

Advertisement

Log in

Categorization of Breast Carcinoma Histopathology Images by Utilizing Region-Based Convolutional Neural Networks

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The inadequacy of experienced pathologists worldwide, combined with the workload of current specialists, has increased the need for digital pathology. Accordingly, in this study, the categorization of breast cancer histopathology images supplied by ICIAR 2018 was carried out using region-based convolutional neural networks (R-CNN) based on transfer learning with custom augmentation, training parameters and patch size selection. The images were normalized using a stain normalization method to reduce inequalities in color distribution. Image patches were extracted, and a transfer learning technique was performed to solve the lack of data. ResNet-18 was utilized for transfer learning. Image augmentation was also performed to increase the training data. The network achieved a test accuracy of 93.75% and 97.06% for four classes and two classes, respectively, on the training dataset. The success of our method was also examined on the blind test set, and it had 73.44% accuracy for four classes and 87.24% accuracy for two classes in patch-wise classification, while it obtained 69.79% accuracy for four classes and 86.46% accuracy for two classes in image-wise classification. Our model achieved a score very close to the highest result in the literature, with a difference of 1.51% for two classes and 4.36% for four classes in patch-wise classification. The outcomes show that R-CNN with transfer learning gives competitive results with state-of-the-art studies in the literature in this dataset and can be used as a tool to aid pathologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Jimenez-del-Toro, O.; Otálora Montenegro, J.; Andersson, M.; Eurén, K.; Hedlund, M.; Rousson, M., Müller, H.; Atzori, M.: Analysis of Histopathology Images, pp. 281–314 (2017). https://doi.org/10.1016/B978-0-12-812133-7.00010-7

  2. Yadavendra; Chand, S.: A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method. Vision Appl. Mach (2020). https://doi.org/10.1007/s00138-020-01094-1

  3. Sharma, S.; Mehra, R.: Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images-a comparative insight. J. Digital Imaging (2020). https://doi.org/10.1007/s10278-019-00307-y

  4. Boumaraf, S.; Liu, X.; Wan, Y.; Zheng, Z.; Ferkous, C.; Ma, X.; Li, Z.; Bardou, D.: Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation. Diagnostics (2021). https://doi.org/10.3390/diagnostics11030528

    Article  Google Scholar 

  5. Komura, D.; Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018). https://doi.org/10.1016/j.csbj.2018.01.001

    Article  Google Scholar 

  6. Naik, D.A.; Mohana, R.M.; Ramu, G.; Lalitha, Y.S.; SureshKumar, M.; Raghavender, K.V.: Analyzing histopathological images by using machine learning techniques. Appl. Nanosci. (2022). https://doi.org/10.1007/s13204-021-02217-4

    Article  Google Scholar 

  7. Lai, Y.: A comparison of traditional machine learning and deep learning in image recognition. J. Phys: Conf. Ser. 1314, 012148 (2019). https://doi.org/10.1088/1742-6596/1314/1/012148

    Article  Google Scholar 

  8. Qin, Y.; Wang, Z.; Xi, D.: Tree cyclegan with maximum diversity loss for image augmentation and its application into gear pitting detection. Appl. Soft Comput. 114, 108130 (2022). https://doi.org/10.1016/j.asoc.2021.108130

    Article  Google Scholar 

  9. Yang, J.; Wang, K.; Luan, F.; Yin, Y.; Zhang, H.: Precacyclegan: perceptual capsule cyclic generative adversarial network for industrial defective sample augmentation. Electronics (2023). https://doi.org/10.3390/electronics12163475

    Article  Google Scholar 

  10. Xi, D.; Qin, Y.; Wang, S.: Ydrsnet: an integrated yolov5-deeplabv3 + real-time segmentation network for gear pitting measurement. J. Intell. Manuf. 34(4), 1585–1599 (2023). https://doi.org/10.1007/s10845-021-01876-y

    Article  Google Scholar 

  11. Liu, T.; Wang, W.: Research on intelligent recognition of bridge diseases based on yolov5 and deeplabv3+. In: 2023 4th International Conference on Computer Vision, Image and Deep Learning (CVIDL), pp. 203–209 (2023). https://doi.org/10.1109/CVIDL58838.2023.10166062

  12. Nawaz, W.; Ahmed, S.; Tahir, A.; Khan, H.A.: Classification of breast cancer histology images using alexnet. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 869–876. Springer, Cham (2018)

    Chapter  Google Scholar 

  13. Ferreira, C.A.; Melo, T.; Sousa, P.; Meyer, M.I.; Shakibapour, E.; Costa, P.; Campilho, A.: Classification of breast cancer histology images through transfer learning using a pre-trained inception resnet v2. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 763–770. Springer, Cham (2018)

    Chapter  Google Scholar 

  14. Vang, Y.S.; Chen, Z.; Xie, X.: Deep Learning Framework for Multi-class Breast Cancer Histology Image Classification. arXiv (2018). https://doi.org/10.48550/ARXIV.1802.00931

  15. Vesal, S.; Ravikumar, N.; Davari, A.; Ellmann, S.; Maier, A.: Classification of breast cancer histology images using transfer learning. arXiv (2018). https://doi.org/10.48550/ARXIV.1802.09424

  16. Guo, Y.; Dong, H.; Song, F.; Zhu, C.; Liu, J.: Breast cancer histology image classification based on deep neural networks. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 827–836. Springer, Cham (2018)

    Chapter  Google Scholar 

  17. Golatkar, A.; Anand, D.; Sethi, A.: Classification of breast cancer histology using deep learning. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 837–844. Springer, Cham (2018)

    Chapter  Google Scholar 

  18. Wang, Z.; Dong, N.; Dai, W.; Rosario, S.D.; Xing, E.P.: Classification of breast cancer histopathological images using convolutional neural networks with hierarchical loss and global pooling. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 745–753. Springer, Cham (2018)

    Chapter  Google Scholar 

  19. Mahbod, A.; Ellinger, I.; Ecker, R.; Smedby, Ö.; Wang, C.: Breast cancer histological image classification using fine-tuned deep network fusion. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 754–762. Springer, Cham (2018)

    Chapter  Google Scholar 

  20. Cao, H.; Bernard, S.; Heutte, L.; Sabourin, R.: Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 779–787. Springer, Cham (2018)

    Chapter  Google Scholar 

  21. Chennamsetty, S.S.; Safwan, M.; Alex, V.: Classification of breast cancer histology image using ensemble of pre-trained neural networks. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 804–811. Springer, Cham (2018)

    Chapter  Google Scholar 

  22. Kwok, S.: Multiclass classification of breast cancer in whole-slide images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) Image Analysis and Recognition, pp. 931–940. Springer, Cham (2018)

    Chapter  Google Scholar 

  23. Sarker, M.I.; Kim, H.; Tarasov, D.; Akhmetzanov, D.: Inception Architecture and Residual Connections in Classification of Breast Cancer Histology Images. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.04619

  24. Li, Y.; Xie, X.; Shen, L.; Liu, S.: Reverse active learning based atrous densenet for pathological image classification. BMC Bioinform. (2019). https://doi.org/10.1186/s12859-019-2979-y

    Article  Google Scholar 

  25. Kassani, S.H.; Kassani, P.H.; Wesolowski, M.J.; Schneider, K.A.; Deters, R.: Breast cancer diagnosis with transfer learning and global pooling. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), pp. 519–524 (2019). https://doi.org/10.1109/ICTC46691.2019.8939878

  26. Zhu, C.; Song, F.; Wang, Y.; Dong, H.; Guo, Y.; Liu, J.: Breast cancer histopathology image classification through assembling multiple compact cnns. BMC Med. Inform. Decision Making (2019). https://doi.org/10.1186/s12911-019-0913-x

    Article  Google Scholar 

  27. Roy, K.; Banik, D.; Bhattacharjee, D.; Nasipuri, M.: Patch-based system for classification of breast histology images using deep learning. Comput. Med. Imaging Graph. 71, 90–103 (2019). https://doi.org/10.1016/j.compmedimag.2018.11.003

    Article  Google Scholar 

  28. Munien, C.; Viriri, S.: Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with efficientnets. Comput. Intell. Neurosci. 2021, 1–17 (2021). https://doi.org/10.1155/2021/5580914

    Article  Google Scholar 

  29. Elmannai, H.; Hamdi, M.; AlGarni, A.: Deep learning models combining for breast cancer histopathology image classification. Int. J. Comput. Intell. Syst. (2021). https://doi.org/10.2991/ijcis.d.210301.002

    Article  Google Scholar 

  30. Zhou, Y.; Zhang, C.; Gao, S.: Breast cancer classification from histological images using multi-scale dense network. In: 2022 2nd international conference on consumer electronics and computer engineering (ICCECE), pp. 657–661 (2022). https://doi.org/10.1109/ICCECE54139.2022.9712760

  31. Abedhaliem, A.H.; Wahed, M.E.; Metwally, M.S.; Atiea, M.A.: A hybrid approach for classification breast cancer histopathology images. Front. Sci. Res. Technol. 3(1), 1–10 (2021)

    Google Scholar 

  32. Ghoneim, O.; Soliman, G.; Amr, G.; Mahgoub, H.: Breast cancer histological image classification using ensemble convolutional neural networks and triplet loss. IOSR J. Comput. Eng. IOSR-JCE 23, 30–42 (2021)

    Google Scholar 

  33. Attallah, O.; Anwar, F.; Ghanem, N.M.; Ismail, M.A.: Histo-cadx: duo cascaded fusion stages for breast cancer diagnosis from histopathological images. PeerJ Comput Sci. 7, e493 (2021)

    Article  Google Scholar 

  34. Bhowal, P.; Sen, S.; Velasquez, J.D.; Sarkar, R.: Fuzzy ensemble of deep learning models using choquet fuzzy integral, coalition game and information theory for breast cancer histology classification. Expert Syst. Appl. 190, 116167 (2022). https://doi.org/10.1016/j.eswa.2021.116167

    Article  Google Scholar 

  35. Khan, S.I.; Shahrior, A.; Karim, R.; Hasan, M.; Rahman, A.: Multinet: a deep neural network approach for detecting breast cancer through multi-scale feature fusion. J. King Saud Univ.- Comput. Inf. Sci. 34(8), 6217–6228 (2022). https://doi.org/10.1016/j.jksuci.2021.08.004

    Article  Google Scholar 

  36. Alzubaidi, L.; Al-Shamma, O.; Fadhel, M.A.; Farhan, L.; Zhang, J.; Duan, Y.: Optimizing the performance of breast cancer classification by employing the same domain transfer learning from hybrid deep convolutional neural network model. Electronics (2020). https://doi.org/10.3390/electronics9030445

    Article  Google Scholar 

  37. Alzubaidi, L.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.; Santamaría, J.; Duan, Y.: Robust application of new deep learning tools: an experimental study in medical imaging. Multimed. Tools Appl. (2022). https://doi.org/10.1007/s11042-021-10942-9

    Article  Google Scholar 

  38. Senousy, Z.; Abdelsamea, M.M.; Gaber, M.M.; Abdar, M.; Acharya, U.R.; Khosravi, A.; Nahavandi, S.: Mcua: Multi-level context and uncertainty aware dynamic deep ensemble for breast cancer histology image classification. IEEE Trans. Biomed. Eng. 69(2), 818–829 (2022). https://doi.org/10.1109/TBME.2021.3107446

    Article  Google Scholar 

  39. Sanyal, R.; Kar, D.; Sarkar, R.: Carcinoma type classification from high-resolution breast microscopy images using a hybrid ensemble of deep convolutional features and gradient boosting trees classifiers. IEEE/ACM Trans. Comput. Biol. Bioinf. 19(4), 2124–2136 (2022). https://doi.org/10.1109/TCBB.2021.3071022

    Article  Google Scholar 

  40. Araújo, T.; Aresta, G.; Castro, E.; Rouco, J.; Aguiar, P.; Eloy, C.; Polónia, A.; Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PloS one (2017). https://doi.org/10.1371/journal.pone.0177544

    Article  Google Scholar 

  41. Aresta, G.; Araújo, T.; Kwok, S.; Chennamsetty, S.S.; Safwan, M.; Alex, V.; Marami, B.; Prastawa, M.; Chan, M.; Donovan, M.; Fernandez, G.; Zeineh, J.; Kohl, M.; Walz, C.; Ludwig, F.; Braunewell, S.; Baust, M.; Vu, Q.D.; To, M.N.N.; Kim, E.; Kwak, J.T.; Galal, S.; Sanchez-Freire, V.; Brancati, N.; Frucci, M.; Riccio, D.; Wang, Y.; Sun, L.; Ma, K.; Fang, J.; Kone, I.; Boulmane, L.; Campilho, A.; Eloy, C.; Polónia, A.; Aguiar, P.: Bach: Grand challenge on breast cancer histology images. Med. Image Anal. 56, 122–139 (2019). https://doi.org/10.1016/j.media.2019.05.010

    Article  Google Scholar 

  42. Fondón, I.; Sarmiento, A.; García, A.I.; Silvestre, M.; Eloy, C.; Polónia, A.; Aguiar, P.: Automatic classification of tissue malignancy for breast carcinoma diagnosis. Comput. Biol. Med. 96, 41–51 (2018). https://doi.org/10.1016/j.compbiomed.2018.03.003

    Article  Google Scholar 

  43. Polónia, A.; Eloy, C.; Aguiar, P.: BACH Dataset: Grand Challenge on Breast Cancer Histology images. http://zenodo.org/record/3632035#.YfgzR-pBxPY. Accessed August 22, 2021 (2018)

  44. Reinhard, E.; Ashikhmin, M.; Gooch, B.; Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21, 34–41 (2001). https://doi.org/10.1109/38.946629

    Article  Google Scholar 

  45. Macenko, M.; Niethammer, M.; Marron, J.S.; Borland, D.; Woosley, J.T.; Guan, X.; Schmitt, C.; Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE international symposium on biomedical imaging: from nano to macro, pp. 1107–1110 (2009). https://doi.org/10.1109/ISBI.2009.5193250

  46. Khan, A.M.; Rajpoot, N.; Treanor, D.; Magee, D.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014). https://doi.org/10.1109/TBME.2014.2303294

  47. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016). https://doi.org/10.1109/TPAMI.2015.2437384

    Article  Google Scholar 

  48. Bayar, B.; Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. IH &MMSec ’16, pp. 5–10. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2909827.2930786

  49. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960). https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  50. Landis, J.R.; Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977). https://doi.org/10.2307/2529310

    Article  Google Scholar 

Download references

Acknowledgements

We thank Merve İnceman, a specialist in Medical Pathology, who contributed to the study on the classification of images in the blind test.

Funding

This work was supported by the Scientific Research Project Unit of Çukurova University [Project number: FDK-2019-11505]. The funders did not play any role in the design of the study, the collection, analysis and interpretation of data, or in writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TSA and SA conceptualized the study and analyzed the experimental results. TSA implemented the methodology and wrote the draft paper. SA supervised the research. TT and SA revised the writing. TT provided medical knowledge and contributed to the classification of images in the blind test set. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Sami Arıca.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntaş, T.S., Toyran, T. & Arıca, S. Categorization of Breast Carcinoma Histopathology Images by Utilizing Region-Based Convolutional Neural Networks. Arab J Sci Eng 49, 6695–6705 (2024). https://doi.org/10.1007/s13369-023-08387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08387-3

Keywords

Navigation