Skip to main content
Log in

Deep Learning-Based Noise Type Classification and Removal for Drone Image Restoration

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recent advancements in deep learning have enabled significant progress in image noise type classification and denoising systems. Researchers working on deep learning-based image multi-type denoising either use a single-stage or a two-stage denoising approach. The single-stage approach proposes designing a single denoising autoencoder (DAE), whereas the two-stage approach first classifies the noise type, followed by applying a noise-specific filter. The problem with the single-stage approach is that a generalized DAE fails to be effective. Two-stage approaches work on a limited number of noise types, as researchers typically address only two or three noise types. This paper proposes a framework for two-stage multi-type image denoising that provides classification and denoising of four types of noise with a per-class classification accuracy of 98.2–100% and a denoising technique that obtained promising PSNR and SSIM values for various types of noise, ensuring effective image restoration. The proposed methodology can be applied to any field that requires image denoising without prior knowledge of the type of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Data available in Github repository.

References

  1. Yuan, Y.; Shen, Q.; Wang, S.; Ren, J.; Yang, D.; Yang, Q.; Fan, J.; Mu, X.: Coronavirus mask protection algorithm: a new bio-inspired optimization algorithm and its applications. J. Bionic Eng. 20(4), 1747–1765 (2023). https://doi.org/10.1007/s42235-023-00359-5

    Article  Google Scholar 

  2. Yuan, Y.; Yang, Q.; Ren, J.; Fan, J.; Shen, Q.; Wang, X.; Zhao, Y.: Learning-imitation strategy-assisted alpine skiing optimization for the boom of offshore drilling platform. Ocean Eng. 278, 114317 (2023). https://doi.org/10.1016/j.oceaneng.2023.114317

    Article  Google Scholar 

  3. Yuan, Y.; Ren, J.; Wang, S.; Wang, Z.; Mu, X.; Zhao, W.: Alpine skiing optimization: a new bio-inspired optimization algorithm. Adv. Eng. Softw. 170, 103158 (2022). https://doi.org/10.1016/j.advengsoft.2022.103158

    Article  Google Scholar 

  4. Yuan, Y.; Mu, X.; Shao, X.; Ren, J.; Zhao, Y.; Wang, Z.: Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm. Appl. Soft Comput. 123, 108947 (2022). https://doi.org/10.1016/j.asoc.2022.108947

    Article  Google Scholar 

  5. Russo, F.: Edge detection in noisy images using fuzzy reasoning. IEEE Trans. Instrum. Meas. 47(5), 1102–1105 (1998)

    Article  ADS  Google Scholar 

  6. Khan, S.; Lee, D.H.; Khan, M.A., Gilal, A.R.; Iqbal, J.; Waqas, A.: Efficient and improved edge detection via a hysteresis thresholding method. Curr. Sci. (2020)

  7. Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: application to edge detection. Fuzzy Sets Syst. 160(13), 1819–1840 (2009)

    Article  MathSciNet  Google Scholar 

  8. Thaha, M.M.; Kumar, K.P.M.; Murugan, B.S.; Dhanasekeran, S.; Vijayakarthick, P.; Selvi, A.S.: Brain tumor segmentation using convolutional neural networks in MRI images. J. Med. Syst. 43, 1–10 (2019)

    Article  Google Scholar 

  9. Qiao, Y.; Truman, M.; Sukkarieh, S.: Cattle segmentation and contour extraction based on mask R-CNN for precision livestock farming. Comput. Electron. Agric. 165, 104958 (2019)

    Article  Google Scholar 

  10. Sobbahi, R.A.; Tekli, J.: Comparing deep learning models for low-light natural scene image enhancement and their impact on object detection and classification: overview, empirical evaluation, and challenges. Signal Process. Image Commun. 109 (2022)

  11. Jasti, V.D.P.; Zamani, A.S.; Arumugam, K.; Naved, M.; Pallathadka, H.; Raghuvanshi, A.; Kaliyapremal, K.: Computational technique based on machine learning and image processing for medical image analysis of breast cancer diagnosis. Secur. Commun. Netw. 2022 (2022)

  12. Abdou, M.A.: Literature review: efficient deep neural networks techniques for medical image analysis. Neural Comput. Appl. 34, 5791–5812 (2022)

    Article  Google Scholar 

  13. Xie, J.; Xu, L.; Chen, E.: Image denoising and inpainting with deep neural networks (2012)

  14. Eng, H.-L.; Ma, K.-Y.K.: Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10, 242–251 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Wang, T.; Qiu, J.; Fu, S.; Ji, W.: Distributed fuzzy h filtering for nonlinear multirate networked double-layer industrial processes. IEEE Trans. Ind. Electron. 64, 5203–5211 (2017)

    Article  Google Scholar 

  16. Civicioglu, P.: Using uncorrupted neighborhoods of the pixels for impulsive noise suppression with ANFIS. IEEE Trans. Image Process. 16, 759–773 (2007)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  17. Yin, H.; Gong, Y.; Qiu, G.: Side window filtering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8758–8766 (2019)

  18. El Helou, M.; Süsstrunk, S.: Blind universal Bayesian image denoising with gaussian noise level learning. IEEE Trans. Image Process. 29, 4885–4897 (2020)

    Article  ADS  Google Scholar 

  19. Mahdaoui, A.E.; Ouahabi, A.; Moulay, M.-S.: Image denoising using a compressive sensing approach based on regularization constraints. Sensors 22(6), 2199 (2022)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Thanh, D.N.H.; Enginoglu, S.: An iterative mean filter for image denoising. IEEE Access 7, 167847–167859 (2019)

    Article  Google Scholar 

  21. Yamashita, R.; Nishio, M.; Do, R.K.; Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imaging 9(4), 611–629 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perrotta, C.; Selwyn, N.: Deep learning goes to school: toward a relational understanding of AI in education. Learn. Media Technol. 45(3), 251–269 (2020)

    Article  Google Scholar 

  23. Anand, R.; Shanthi, T.; Sabeenian, R.S.; Veni, S.: Real time noisy dataset implementation of optical character identification using CNN. Int. J. Intell. Enterp. 7(1–3), 67–80 (2020)

    Google Scholar 

  24. Momeny, M.; Latif, A.; Agha Sarram, M.; Sheikhpour, R.; Zhang, Y.: A noise robust convolutional neural network for image classification. Results Eng. 5, 100072 (2019)

    Google Scholar 

  25. Mansour, R.F.; Alfar, N.M.; Abdel-Khalek, S.; Abdelhaq, M.; Saeed, R.A.; Alsaqour, R.: Optimal deep learning based fusion model for biomedical image classification. Expert Syst. 39(3), 12764 (2021)

    Article  Google Scholar 

  26. Ajay, P.; Goyal, L.M.; Vashistha, S.; Kumar, V.; Kumar, A.: Unsupervised hyperspectral microscopic image segmentation using deep embedded clustering algorithm. Scanning 2022 (2022)

  27. Koziarski, M.; Cyganek, B.: Image recognition with deep neural networks in presence of noise-dealing with and taking advantage of distortions. Integr. VLSI J. 24(4), 337–349 (2017)

    Google Scholar 

  28. Liu, F.; Song, Q.; Jin, G.: The classification and denoising of image noise based on deep neural networks. Appl. Intell. 50(7), 2194–2207 (2020)

  29. Tripathi, M.: Facial image noise classification and denoising using neural network. Sustain. Eng. Innov. 3(2), 25 (2021). https://doi.org/10.37868/sei.v3i2.id142

    Article  Google Scholar 

  30. Chuah, J.H.; Khaw, H.Y.; Soon, F.C.; Chow, C.O.: Detection of gaussian noise and its level using deep convolutional neural network. In: IEEE Region 10 Annual International Conference Proceedings/TENCON, vol. 2017-Decem, pp. 2447–2450. IEEE (2017)

  31. Roy, S.; Ahmed, M.; Akhand, M.: Noisy image classification using hybrid deep learning methods. J. Inf. Commun. Technol. (2018)

  32. Ahmed, W.: Deep Learning-based Noise Type Classification and Removal for Drone Image Restoration—GitHub Repository. https://github.com/waqar-ahmed51/Deep-Learning-based-Noise-Type-Classification-and-Removal-for-Drone-Image-Restoration (2023)

Download references

Funding

This research work was funded by Institutional Fund Projects under Grant No. (IFPIP:169-611-1443). The authors gratefully acknowledge the technical and financial support by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, SK and WA; experiments, WA and SK; validation, WA and AN; writing-review and editing, WA, SK, and GM; project administration and funding acquisition, AN. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Adeeb Noor.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, W., Khan, S., Noor, A. et al. Deep Learning-Based Noise Type Classification and Removal for Drone Image Restoration. Arab J Sci Eng 49, 4287–4306 (2024). https://doi.org/10.1007/s13369-023-08376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08376-6

Keywords

Navigation