Skip to main content
Log in

Seismic Analyses of Crumb Rubber Concrete Frame Structure Under Four Scenarios

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Crumb rubber concrete (CRC) is a cementitious composite produced by incorporating rubber crumbs into normal concrete (NC), characterized by large deformation, high damping, high energy absorption, and lower Young's modulus than normal concrete. This article presents a study on the seismic performance of frame structures under four scenarios: one normal concrete frame and three CRC frames. The total lateral stiffness, fundamental period, lateral earthquake loading, and interstory lateral displacements are calculated and compared based on the standardized design procedure. The results indicate that CRC frame structures increase the fundamental period and reduce the lateral earthquake loadings. The fundamental period of the CRC columns and beams (S3) is increased by 5.48% against normal concrete beams and columns (S0). However, decrease in the total lateral stiffness and increase the interstory lateral displacements was observed. The lateral earthquake loading is reduced by more than 4% against S0. These two competing factors determine the plausibility and benefit of CRC in structural application regarding earthquake design. The inter-story lateral displacements of CRC structures are still within the permissible design limits, confirming CRC's plausibility in structural application. This study also lays the technical ground for further exploring CRC in concrete structural applications that may recycle large quantities of scrap automobile tires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Han Zhu, Crumb rubber concrete: a preliminary engineering and business prospective, Scrap Tire News. 16–17 (2001)

  2. Eldin, N.N.; Senouci, A.B.: Rubber-tire particles as concrete aggregate. J. Mater. Civ. Eng. 5, 478–496 (1993)

    Article  Google Scholar 

  3. Avcular, N.: Analysis of rubberized concrete as a composite material. Cem. Concr. Res. 27, 1135–1139 (1997)

    Article  Google Scholar 

  4. Alshaikh, I.M.H.; Abadel, A.A.; Sennah, K.; Nehdi, M.L.; Tuladhar, R.; Alamri, M.: Progressive collapse resistance of RC beam–slab substructures made with rubberized concrete. Buildings 12, 1274 (2022). https://doi.org/10.3390/buildings12101724

    Article  Google Scholar 

  5. Alshaikh, I.M.H.; Abu Bakar, B.H.; Alwesabi, E.A.H.; Abadel, A.A.; Alghamdi, H.; Altheeb, A.; Tuladhar, R.: Progressive collapse behavior of steel fiber-reinforced rubberized concrete frames. J. Build. Eng. 57, 104920 (2022). https://doi.org/10.1016/j.jobe.2022.104920

    Article  Google Scholar 

  6. Alwesabi, E.A.H.; Bakar, B.H.A.; Alshaikh, I.M.H.; Zeyad, A.M.; Altheeb, A.; Alghamdi, H.: Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber. Structures 33, 4421–4432 (2021). https://doi.org/10.1016/j.istruc.2021.07.011

    Article  Google Scholar 

  7. Alwesabi, E.A.H.; Bakar, B.H.A.; Alshaikh, I.M.H.; Akil, H.M.: Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre. Constr. Build. Mater. 233, 117194 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117194

    Article  Google Scholar 

  8. Turatsinze, A.; Bonnet, S.; Granju, J.-L.: Potential of rubber aggregates to modify properties of cement based-mortars: improvement in cracking shrinkage resistance. Constr. Build. Mater. 21, 176–181 (2007). https://doi.org/10.1016/j.conbuildmat.2005.06.036

    Article  Google Scholar 

  9. Zhu, H.; Thong-On, N.; Zhang, X.: Adding crumb rubber into exterior wall materials. Waste Manag. Res. 20, 407–413 (2002)

    Article  Google Scholar 

  10. Kaloush, K.E.; Way, G.B.; Zhu, H.: Properties of crumb rubber concrete. Transp. Res. Rec. 2005, 8–14 (1914)

    Google Scholar 

  11. Biel, T.D.; Lee, H.: Use of recycled tire rubbers in concrete. In: Infrastruct. New Mater. Methods Repair, ASCE, pp. 351–358, (1994)

  12. Chu, L.; Wang, S.; Li, D.; Zhao, J.; Ma, X.: Cyclic behaviour of beam-column joints made of crumb rubberised concrete (CRC) and traditional concrete (TC). Case Stud. Constr. Mater. 16, e00867 (2022). https://doi.org/10.1016/j.cscm.2021.e00867

    Article  Google Scholar 

  13. Assaggaf, R.A.; Al-Dulaijan, S.U.; Maslehuddin, M.; Al-Amoudi, O.S.B.; Ahmad, S.; Ibrahim, M.: Effect of different treatments of crumb rubber on the durability characteristics of rubberized concrete. Constr. Build. Mater. 318, 126030 (2022). https://doi.org/10.1016/j.conbuildmat.2021.126030

    Article  Google Scholar 

  14. Shao, J.; Zhu, H.; Haruna, S.I.; Xue, G.: Durability and fractal analysis of pore structure of crumb rubber concrete modified with carbon nanotubes. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-07653-8

    Article  Google Scholar 

  15. Shao, J.; Zhu, H.; Zhao, B.; Haruna, S.I.; Xue, G.; Jiang, W.; Wu, K.; Yang, J.: Combined effect of recycled tire rubber and carbon nanotubes on the mechanical properties and microstructure of concrete. Constr. Build. Mater. 322, 126493 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126493

    Article  Google Scholar 

  16. Thomas, B.S.; Gupta, R.C.; Mehra, P.; Kumar, S.: Performance of high strength rubberized concrete in aggressive environment. Constr. Build. Mater. 83, 320–326 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.012

    Article  Google Scholar 

  17. Onuaguluchi, O.; Banthia, N.: Long-term sulfate resistance of cementitious composites containing fine crumb rubber. Cem. Concr. Compos. 104, 103354 (2019). https://doi.org/10.1016/j.cemconcomp.2019.103354

    Article  Google Scholar 

  18. Mhaya, A.M.; Huseien, G.F.; Abidin, A.R.Z.; Ismail, M.: Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes. Constr. Build. Mater. 256, 119505 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119505

    Article  Google Scholar 

  19. Si, R.; Guo, S.; Dai, Q.: Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles. Constr. Build. Mater. 153, 496–505 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.085

    Article  Google Scholar 

  20. Zhu, X.; Miao, C.; Liu, J.; Hong, J.: Influence of crumb rubber on frost resistance of concrete and effect mechanism. Procedia Eng. 27, 206–213 (2012). https://doi.org/10.1016/j.proeng.2011.12.445

    Article  Google Scholar 

  21. Ho, A.C.; Turatsinze, A.; Hameed, R.; Vu, D.C.: Effects of rubber aggregates from grinded used tyres on the concrete resistance to cracking. J. Clean. Prod. 23, 209–215 (2012). https://doi.org/10.1016/j.jclepro.2011.09.016

    Article  Google Scholar 

  22. Jiang, W.; Zhu, H.; Haruna, S.I.; Zhao, B.; Shao, J.; Yu, Y.: Effect of crumb rubber powder on mechanical properties and pore structure of polyurethane-based polymer mortar for repair. Constr. Build. Mater. 309, 125169 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125169

    Article  Google Scholar 

  23. Ling, T.-C.: Effects of compaction method and rubber content on the properties of concrete paving blocks. Constr. Build. Mater. 28, 164–175 (2012). https://doi.org/10.1016/j.conbuildmat.2011.08.069

    Article  Google Scholar 

  24. Hesami, S.; Salehi Hikouei, I.; Emadi, S.A.A.: Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. J. Clean. Prod. 133, 228–234 (2016). https://doi.org/10.1016/j.jclepro.2016.04.079

    Article  Google Scholar 

  25. Shu, X.; Huang, B.: Recycling of waste tire rubber in asphalt and portland cement concrete: an overview. Constr. Build. Mater. 67, 217–224 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.027

    Article  Google Scholar 

  26. Guo, S.; Dai, Q.; Si, R.; Sun, X.; Lu, C.: Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. J. Clean. Prod. 148, 681–689 (2017). https://doi.org/10.1016/j.jclepro.2017.02.046

    Article  Google Scholar 

  27. Al-kahtani, M.S.M.; Zhu, H.; Haruna, S.I.; Shao, J.: Evaluation of mechanical properties of polyurethane-based polymer rubber concrete modified ground glass fiber using response surface methodology. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07112-w

    Article  Google Scholar 

  28. Hernandez-Olivares, F.; Barluenga, G.; Bollati, M.; Witoszek, B.: Static and dynamic behaviour of recycled tyre rubber-filled concrete. Cem. Concr. Res. 32, 1587–1596 (2002)

    Article  Google Scholar 

  29. Zhu, H.: On building crumb rubber concrete test sites. Key Eng. Mater. 302, 411–417 (2005)

    Google Scholar 

  30. Zhu, H.; Liu, C.S.; Zhang, Y.M.; Li, Z.G.: Effect of crumb rubber proportion on compressive and flexural behavior of concrete. J. Tianjin Univ. 40, 761–765 (2007)

    Google Scholar 

  31. Liao, H.; Fang, Y.; Yao, Z.; Yu, T.; Luo, H.; Zhu, N.; Wang, Y.; Li, M.: Effects of fiber and rubber materials on the dynamic mechanical behaviors and damage evolution of shotcrete under cyclic impact load. J. Build. Eng. 73, 106763 (2023). https://doi.org/10.1016/j.jobe.2023.106763

    Article  Google Scholar 

  32. JGJ3-2002: Industrial standard of the People’s Republic of China, Technical specification for concrete structures of tall building. In: China building industry press (2002)

  33. Zheng, L.; Huo, X.S.; Yuan, Y.: Strength, modulus of elasticity, and brittleness index of rubberized concrete. J. Mater. Civ. Eng. 20, 692–699 (2008)

    Article  Google Scholar 

  34. G. S.L.: Handbook for seismic design of buildings. China Architecture and Building Press, Beijing (2002)

  35. Naito, T.: Theory of seismic design of framed building. J. Archit. Inst. Japan. (1992)

  36. Jing, X.U.; Han, Z.H.U.; Chun-sheng, L.I.U.: Preliminary experimental studies on damping ratio of crumb rubber concrete. Concrete 11, 40–42 (2005)

    Google Scholar 

  37. Zheng, L.; Sharon Huo, X.; Yuan, Y.: Experimental investigation on dynamic properties of rubberized concrete. Constr. Build. Mater. 22, 939–947 (2008). https://doi.org/10.1016/j.conbuildmat.2007.03.005

    Article  Google Scholar 

  38. Turatsinze, A.; Granju, J.-L.; Bonnet, S.: Positive synergy between steel-fibres and rubber aggregates: effect on the resistance of cement-based mortars to shrinkage cracking. Cem. Concr. Res. 36, 1692–1697 (2006)

    Article  Google Scholar 

  39. Li, D.; Zhuge, Y.; Gravina, R.; Mills, J.E.: Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab. Constr. Build. Mater. 166, 745–759 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The research is partially supported by Chinese National Science Foundation under Grants: #52078332.

Author information

Authors and Affiliations

Authors

Contributions

WY-Q and HZ: Conceptualization, Investigation, Supervision, Resources, Project administration: SIH and AY: Writing—original draft, Writing—review & editing.

Corresponding authors

Correspondence to S. I. Haruna or Ahmed M. Yosri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao-Qiang, W., Han, Z., Haruna, S.I. et al. Seismic Analyses of Crumb Rubber Concrete Frame Structure Under Four Scenarios. Arab J Sci Eng 49, 5069–5077 (2024). https://doi.org/10.1007/s13369-023-08355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08355-x

Keywords

Navigation