Skip to main content
Log in

Development of Efficient Prediction Model of FRP-to-Concrete Bond Strength Using Curve Fitting and ANFIS Methods

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Externally bonded fiber-reinforced polymer (FRP) plates or sheets have become a common retrofitting approach for sustaining old reinforced concrete structures in the modern era. The capacity of FRP-strengthened structures cannot be accurately estimated because the bond strength between FRP and concrete surface is accurately unpredictable. Various studies are available in the literature to predict the FRP-to-concrete bond strength (FRP-CBS), but they are based on limited experimental data sets and have lesser accuracy. To solve this problem, curve-fitting (CF) and adaptive neuro-fuzzy inference systems (ANFIS) models have been developed to predict the FRP-CBS using 935 datasets. The database was collected from published  literature and the same was used to develop the ML model. Comparison with standard guidelines, including ACI, TR-55 fib, CNR, and JCI, and other analytical models, revealed that the ANFIS model outperformed the CF model and all other analytical models. The ANFIS model achieved a correlation coefficient of 0.9189 and a mean absolute error (MAE) of 2.43 kN, while the CF model achieved a correlation coefficient of 0.7303 and an MAE value of 4.30 kN. Moreover, a parametric study was conducted to identify the influence of each specific parameter on the bond strength. The developed ANFIS-based model can be readily utilized by structural engineers, FRP applicators, and researchers for estimating the FRP-to-concrete bond strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

f at ,f e :

Adhesive tensile strength

A tr :

Area of transverse bar

P u :

Bond strength

L f , L b , l b :

Bonded length of FRP

f ck, f c,f'c, f cu :

Compressive strength of concrete

C :

Concrete cover

f cm :

Concrete cylinder mean compressive strength

d b :

Diameter of FRP

a e :

Distance from FRP to closest concrete block edge

E f :

Elastric modulus of FRP

L :

Embedded length of bar

A f :

FRP cross-section area

p f :

FRP perimeter

\(\varepsilon\) fu :

FRP ultimate strain

d g , h g , D g :

Groove depth

p g :

Groove perimeter

b g ,W g :

Groove width

c :

Intercept of the line coordinate

y min :

Minimum value in the selected data set

L c :

Length of concrete block

y max :

Maximum value in the selected dataset

P u,normalized :

Normalized bond strength

X normalized :

Normalized values

n :

Number of bars being developed along the plane of splitting

m :

Slope of line

s :

Spacing of transverse bars

t f :

Thickness of FRP plie or strip

f f , f fu :

Ultimate tensile strength of FRP

y :

Value to be normalized

b c :

Width of concrete block

b f :

Width of FRP plie

\(\beta\) :

Surface preparation coefficient

\({f}_{ctm}\) :

Mean axial tensile strength of concrete

\(\eta\) :

Calibration factor to consider the effect of the maximum aggregate size

\({G}_{f}\) :

Interfacial fracture energy

\({f}_{ctm}\) :

Mean axial tensile strength

ANFIS-SC:

ANFIS with subtractive clustering

ANFIS:

Adaptive neuro-fuzzy inference system

ACI:

American concrete institute

ANFIS-FCM:

ANFIS with fuzzy c-means clustering

FFA:

ANFIS-firefly algorithm

ACO:

Ant colony optimization

AFRP:

Aramid fiber-reinforced polymer

ABC:

Artificial bee colony

ANN:

Artificial neural networks

BFRP:

Basalt fiber-reinforced polymer

CFRP:

Carbon fiber-reinforced polymer

r :

Cluster center radius

CPs:

Consequent parameters

DEO:

Differential evolution optimization

FRP:

Fiber reinforced polymer

FIS:

Fuzzy inference system

GPR:

Gaussian progress regression

GFRP:

Glass fiber-reinforced polymer

JCI:

Japan concrete institute

M5Tree:

M5 model tree

MAE:

Mean absolute error

RMSE:

Mean absolute percentage error

MF:

Membership function

MLR:

Multiple linear regression

MNLR:

Multiple nonlinear regression

MARS:

Multivariate adaptive regression splines

NS:

Nash-Sutcliffe efficiency index

PSO:

Particle swarm optimization

R :

Correlation Coefficient

PPs:

Premise parameters

RBNN:

Radial basis neural network

MAPE:

Root mean square error

SF:

Squash factor

FRP-CBS:

FRP-to-concrete bond strength

\(\gamma and d\) :

Experimental curve fitting coefficient

\({\beta }_{w}\) :

Width ratio between FRP and concrete

References

  1. Motavalli, M.; Czaderski, C.; Schumacher, A.; Gsell, D.: Fibre reinforced polymer composite materials for building and construction. In Textiles, Polymers and Composites for Buildings. 69–128 (2010). https://doi.org/10.1533/9780845699994.1.69

  2. Hollaway, L.C.: A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 24(12), 2419–2445 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.062

    Article  Google Scholar 

  3. Hawileh, R.A.; Nawaz, W.; Abdalla, J.A.: Flexural behavior of reinforced concrete beams externally strengthened with Hardwire Steel-Fiber sheets. Constr. Build. Mater. 172, 562–573 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.225

    Article  Google Scholar 

  4. Zhang, W.; Kang, S.; Huang, Y.; Liu, X.: Behavior of reinforced concrete beams without stirrups and strengthened with basalt fiber-reinforced polymer sheets. J. Compos. Constr. 27(2), 4023007 (2023). https://doi.org/10.1061/JCCOF2.CCENG-4082

    Article  Google Scholar 

  5. Rasheed, H.A.: Strengthening design of reinforced concrete with FRP. CRC Press (2014). https://doi.org/10.1201/b17968

    Article  Google Scholar 

  6. American Concrete Institute (ACI): ACI 440.2R-08, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Farmington Hills, MI (2008).

  7. Triantafillou, T; Matthys, S.; Audenaert, K.; Balázs, G.; Blaschko, M.; Blontrock, H.: Externally Bonded FRP Reinforcement for RC Structures. Bulletin FIB (Vol. 14). Lausanne, Switzerland: International Federation for Structural Concrete (fib); (2001).

  8. Zhang, P.; Lei, D.; Ren, Q.; He, J.; Shen, H.; Yang, Z.: Experimental and numerical investigation of debonding process of the FRP plate-concrete interface. Constr. Build. Mater. 235, 117457 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117457

    Article  Google Scholar 

  9. Mazzotti, C.; Savoia, M.; Ferracuti, B.: A new single-shear set-up for stable debonding of FRP–concrete joints. Constr. Build. Mater. 23(4), 1529–1537 (2009). https://doi.org/10.1016/j.conbuildmat.2008.04.003

    Article  Google Scholar 

  10. Su, M.; Zhong, Q.; Peng, H.; Li, S.: Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete. Constr. Build. Mater. 270, 121456 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121456

    Article  Google Scholar 

  11. Huang, Y.; Huang, J.; Zhang, W.; Liu, X.: Experimental and numerical study of hooked-end steel fiber-reinforced concrete based on the meso- and macro-models. Compos. Struct. (2023). https://doi.org/10.1016/j.compstruct.2023.116750

    Article  Google Scholar 

  12. Yazdani, A.; Sanginabadi, K.; Shahidzadeh, M.-S.; Salimi, M.-R.; Shamohammadi, A.: Consideration of data correlation to estimate FRP-to-concrete bond capacity models. Constr. Build. Mater. 308, 125106 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125106

    Article  Google Scholar 

  13. Chen, J.F.; Teng, J.G.: Anchorage strength models for FRP and steel plates bonded to concrete. J. Struct. Eng. 127(7), 784–791 (2001). https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784)

    Article  Google Scholar 

  14. Mansouri, I.; Kisi, O.: Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Compos. B. Eng. 70, 247–255 (2015). https://doi.org/10.1016/j.compositesb.2014.11.023

    Article  Google Scholar 

  15. Naderpour, H.; Mirrashid, M.; Nagai, K.: An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro–fuzzy inference system. Eng. Comput. 36(3), 1083–1100 (2020). https://doi.org/10.1007/s00366-019-00751-y

    Article  Google Scholar 

  16. Kumar, A.; Arora, H.C.; Mohammed, M.A.; Kumar, K.; Nedoma, J.: An optimized neuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beams. IEEE Access. 10, 3790–3806 (2022). https://doi.org/10.1109/ACCESS.2021.3140046

    Article  Google Scholar 

  17. Pei, Z.; Wei, Y.: Prediction of the bond strength of FRP-to-concrete under direct tension by ACO-based ANFIS approach. Compos. Struct. 282, 115070 (2022). https://doi.org/10.1016/j.compstruct.2021.115070

    Article  Google Scholar 

  18. Bedirhanoglu, I.: A practical neuro-fuzzy model for estimating modulus of elasticity of concrete. Struct. Eng. Mech. 51(2), 249–265 (2014)

    Article  Google Scholar 

  19. Sahin, U.; Bedirhanoglu, I.: A fuzzy model approach to stress-strain relationship of concrete in compression. Arab. J. Sci. Eng. 39(6), 4515–4527 (2014). https://doi.org/10.1007/s13369-014-1170-z

    Article  Google Scholar 

  20. Coelho, M.R.F.; Sena-Cruz, J.M.; Neves, L.A.C.; Pereira, M.; Cortez, P.; Miranda, T.: Using data mining algorithms to predict the bond strength of NSM FRP systems in concrete. Constr. Build. Mater. 126, 484–495 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.048

    Article  Google Scholar 

  21. Chen, S.-Z.; Zhang, S.-Y.; Han, W.-S.; Wu, G.: Ensemble learning based approach for FRP-concrete bond strength prediction. Constr. Build. Mater. 302, 124230 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124230

    Article  Google Scholar 

  22. Jahangir, H.; Rezazadeh Eidgahee, D.: A new and robust hybrid artificial bee colony algorithm – ANN model for FRP-concrete bond strength evaluation. Compos. Struct. 257, 113160 (2021). https://doi.org/10.1016/j.compstruct.2020.113160

    Article  Google Scholar 

  23. Basaran, B.; Kalkan, I.; Bergil, E.; Erdal, E.: Estimation of the FRP-concrete bond strength with code formulations and machine learning algorithms. Compos. Struct. 268, 113972 (2021). https://doi.org/10.1016/j.compstruct.2021.113972

    Article  Google Scholar 

  24. Zhang, R.; Xue, X.: A predictive model for the bond strength of near-surface-mounted FRP bonded to concrete. Compos. Struct. 262, 113618 (2021). https://doi.org/10.1016/j.compstruct.2021.113618

    Article  Google Scholar 

  25. Zhou, Y.; Zheng, S.; Huang, Z.; Sui, L.; Chen, Y.: Explicit neural network model for predicting FRP-concrete interfacial bond strength based on a large database. Compos. Struct. 240, 111998 (2020). https://doi.org/10.1016/j.compstruct.2020.111998

    Article  Google Scholar 

  26. Abdalla, J.A.; Hawileh, R.; Al-Tamimi, A.: Prediction of FRP-concrete ultimate bond strength using artificial neural network. In: Fourth International Conference on Modeling, Simulation and Applied Optimization. 2011 (2011). https://doi.org/10.1109/ICMSAO.2011.5775518

  27. Mashrei, M.A.; Seracino, R.; Rahman, M.S.: Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints. Constr. Build. Mater. 40, 812–821 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.109

    Article  Google Scholar 

  28. Haddad, R.; Haddad, M.: Predicting fiber-reinforced polymer–concrete bond strength using artificial neural networks: a comparative analysis study. Struct. Concr. 22(1), 38–49 (2021). https://doi.org/10.1002/suco.201900298

    Article  Google Scholar 

  29. Köroğlu, M.A.: Artificial neural network for predicting the flexural bond strength of FRP bars in concrete. Sci. Eng. Compos. Mater. 26(1), 12–29 (2019). https://doi.org/10.1515/secm-2017-0155

    Article  Google Scholar 

  30. Cascardi, A.; Micelli, F.: ANN-based model for the prediction of the bond strength between FRP and concrete. Fibers. 9(7), 46 (2021). https://doi.org/10.3390/fib9070046

    Article  Google Scholar 

  31. Dai, J.; Ueda, T.; Sato, Y.: Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method. J. Compos. Constr. 9(1), 52–62 (2005). https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52)

    Article  Google Scholar 

  32. Hosseini, A.; Mostofinejad, D.: Effective bond length of FRP-to-concrete adhesively-bonded joints: experimental evaluation of existing models. Int. J. Adhes. Adhes. 48, 150–158 (2014). https://doi.org/10.1016/j.ijadhadh.2013.09.022

    Article  Google Scholar 

  33. Li, W.; Li, J.; Ren, X.; Leung, C.K.Y.; Xing, F.: Coupling effect of concrete strength and bonding length on bond behaviors of fiber reinforced polymer–concrete interface. J. Reinf. Plast. Compos. 34(5), 421–432 (2015). https://doi.org/10.1177/0731684415573816

    Article  Google Scholar 

  34. Chen, C.; Li, X.; Zhao, D.; Huang, Z.; Sui, L.; Xing, F., et al.: Mechanism of surface preparation on FRP-Concrete bond performance: a quantitative study. Compos. B. Eng. 163, 193–206 (2019). https://doi.org/10.1016/j.compositesb.2018.11.027

    Article  Google Scholar 

  35. Yuan, C.; Chen, W.; Pham, T.M.; Hao, H.: Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete. Compos. B. Eng. 158, 459–474 (2019). https://doi.org/10.1016/j.compositesb.2018.09.089

    Article  Google Scholar 

  36. Mostofinejad, D.; Sanginabadi, K.; Eftekhar, M.R.: Effects of coarse aggregate volume on CFRP-concrete bond strength and behavior. Constr. Build. Mater. 198, 42–57 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.188

    Article  Google Scholar 

  37. Heydari Mofrad, M.; Mostofinejad, D.; Hosseini, A.: A generic non-linear bond-slip model for CFRP composites bonded to concrete substrate using EBR and EBROG techniques. Compos. Struct. 220, 31–44 (2019). https://doi.org/10.1016/j.compstruct.2019.03.063

    Article  Google Scholar 

  38. Dai, J.-G.; Sato, Y.; Ueda, T.: Improving the load transfer and effective bond length for FRP composites bonded to concrete. Proc. Jpn Concrete Inst. 24(1), 1423 (2002)

    Google Scholar 

  39. Yun, Y.; Wu, Y.-F.: Durability of CFRP–concrete joints under freeze–thaw cycling. Cold Reg. Sci. Technol. 65(3), 401–412 (2011). https://doi.org/10.1016/j.coldregions.2010.11.008

    Article  Google Scholar 

  40. Ueno, S.; Toutanji, H.; Vuddandam, R.: Introduction of a stress state criterion to predict bond strength between FRP and concrete substrate. J. Compos. Constr. 19(1), 04014024 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000481

    Article  Google Scholar 

  41. Yuan, C.; Chen, W.; Pham, T.M.; Hao, H.; Cui, J.; Shi, Y.: Interfacial bond behaviour between hybrid carbon/basalt fibre composites and concrete under dynamic loading. Int. J. Adhes. Adhes. 99, 102569 (2020). https://doi.org/10.1016/j.ijadhadh.2020.102569

    Article  Google Scholar 

  42. Moghaddas, A.; Mostofinejad, D.; Saljoughian, A.; Ilia, E.: An empirical FRP-concrete bond-slip model for externally-bonded reinforcement on grooves. Constr. Build. Mater. 281, 122575 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122575

    Article  Google Scholar 

  43. Ceroni, F.; Garofano, A.; Pecce, M.: Modelling of the bond behaviour of tuff elements externally bonded with FRP sheets. Compos. B. Eng. 59, 248–259 (2014). https://doi.org/10.1016/j.compositesb.2013.12.007

    Article  Google Scholar 

  44. Toutanji, H.; Saxena, P.; Zhao, L.; Ooi, T.: Prediction of interfacial bond failure of FRP–concrete surface. J. Compos. Constr. 11(4), 427–436 (2007). https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(427)

    Article  Google Scholar 

  45. Yao, J.: Debonding failures in RC beams and slabs strengthened with FRP plates. Ph.D. Dissertation, Hong Kong Polytechnic University, Hong Kong.

  46. Takeo, K.; Matsushita, H.; Makizumi, T.: Proceedings of Japan concrete institute Nagashima. Bond Character. CFRP Sheets CFRP Bond. Tech. 19(2), 1599–1604 (1997)

    Google Scholar 

  47. Mohammadi, M.; Mostofinejad, D.: CFRP-to-concrete bond behavior under aggressive exposure of sewer chamber. J. Compos. Mater. 55(24), 3359–3373 (2021). https://doi.org/10.1177/00219983211004699

    Article  Google Scholar 

  48. Zheng, X.H.; Huang, P.Y.; Guo, X.Y.; Huang, J.L.: Experimental study on bond behavior of FRP-concrete interface in hygrothermal environment. Int. J. Polym. Sci. 2016, 5832130 (2016). https://doi.org/10.1155/2016/5832130

    Article  Google Scholar 

  49. Kumar, K.; Saini, R.P.: Development of correlation to predict the efficiency of a hydro machine under different operating conditions. Sustain. Energy Technol. Assess. 50, 101859 (2022). https://doi.org/10.1016/j.seta.2021.101859

    Article  Google Scholar 

  50. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  51. Kumar, A.; Arora, H.C.; Kapoor, N.R.; Kumar, K.; Hadzima-Nyarko, M.; Radu, D.: Machine learning intelligence to assess the shear capacity of corroded reinforced concrete beams. Sci. Rep. 13(1), 2857 (2023). https://doi.org/10.1038/s41598-023-30037-9

    Article  Google Scholar 

  52. Kapoor, N.R.; Kumar, A.; Kumar, A.; Zebari, D.A.; Kumar, K.; Mohammed, M.A.; Al-Waisy, A.S.; Marwan, A.A.: Event-specific transmission forecasting of SARS-CoV-2 in a mixed-mode ventilated office room using an ANN. Int. J. Environ. Res. Public Health. 19(24), 16862 (2022). https://doi.org/10.3390/ijerph192416862

    Article  Google Scholar 

  53. Arora, H.C.; Kumar, S.; Kontoni, D.P.N.; Kumar, A.; Sharma, M.; Kapoor, N.R.; Kumar, K.: Axial capacity of FRP-reinforced concrete columns: computational intelligence-based prognosis for sustainable structures. Buildings. 12(12), 2137 (2022). https://doi.org/10.3390/buildings12122137

    Article  Google Scholar 

  54. Kapoor, N.R.; Kumar, A.; Kumar, A.; Kumar, A.; Kumar, K.: Transmission probability of SARS-CoV-2 in office environment using artificial neural network. IEEE Access. 10, 121204–121229 (2022). https://doi.org/10.1109/ACCESS.2022.3222795

    Article  Google Scholar 

  55. Sharma, S.; Arora, H.C.; Kumar, A.; Kontoni, D.P.N.; Kapoor, N.R.; Kumar, K.; Kumar, K.; Singh, A.: Computational intelligence-based structural health monitoring of corroded and eccentrically loaded reinforced concrete columns. Shock Vib. 2023, 9715120 (2023). https://doi.org/10.1155/2023/9715120

    Article  Google Scholar 

  56. Singh, R.; Arora, H.C.; Bahrami, A.; Kumar, A.; Kapoor, N.R.; Kumar, K.; Kumar, K.; Rai, H.S.: Enhancing sustainability of corroded RC structures: estimating steel-to-concrete bond strength with ANN and SVM algorithms. Materials. 15(23), 8295 (2022). https://doi.org/10.3390/ma15238295

    Article  Google Scholar 

  57. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. Syst. 23(3), 665–685 (1993). https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  58. Yaghoobi, A.; Bakhshi-Jooybari, M.; Gorji, A.; Baseri, H.: Application of adaptive neuro fuzzy inference system and genetic algorithm for pressure path optimization in sheet hydroforming process. Int. J. Adv. Manuf. Technol. 86(9), 2667–2677 (2016). https://doi.org/10.1007/s00170-016-8349-2

    Article  Google Scholar 

  59. Takagi, T.; Sugeno, M.: Derivation of fuzzy control rules from human operator’s control actions. IFAC Proc. 16(13), 55–60 (1983). https://doi.org/10.1016/S1474-6670(17)62005-6

    Article  Google Scholar 

  60. Kumar, A.; Arora, H.C.; Kumar, K.; Garg, H.: Performance prognosis of FRCM-to-concrete bond strength using ANFIS-based fuzzy algorithm. Exp. Syst. Appl. 216, 119497 (2023). https://doi.org/10.1016/j.eswa.2022.119497

    Article  Google Scholar 

  61. Jain Sharad, K.; Sudheer, K.P.: Fitting of hydrologic models: a close look at the nash-sutcliffe index. J. Hydrol. Eng. 13(10), 981–986 (2008). https://doi.org/10.1061/(ASCE)1084-0699(2008)13:10(981)

    Article  Google Scholar 

  62. Armaghani, D.J.; Asteris, P.G.; Fatemi, S.A.; Hasanipanah, M.; Tarinejad, R.; Rashid, A.S.A.; Huynh, V.V.: On the use of neuro-swarm system to forecast the pile settlement. Appl. Sci. 10(6), 1904 (2020). https://doi.org/10.3390/app10061904

    Article  Google Scholar 

  63. Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. Syst. 15(1), 116–132 (1985). https://doi.org/10.1109/TSMC.1985.6313399

    Article  Google Scholar 

  64. CNR-DT 200 R1/2012: Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures. 2006.

  65. TR 55. Design Guidance for Strengthening Concrete Structures Using Fibre Composite Materials, 3rd ed., Concrete Society, Camberley, 2012.

  66. Japan Concrete Institute (JCI). Technical report of technical committee on retrofit technology. In: Proceedings of the International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete Structures, Kyoto, Japan, Japan Concrete Institute (JCI): Tokyo, Japan. 2003.

  67. Tanaka, T.: Shear resisting mechanism of reinforced concrete beams with CFS as shear reinforcement. Graduation thesis, Hokkaido University, Japan. 1996.

  68. Khalifa, A.; GoldWilliam, J.; Nanni, A.; Aziz, M.I.A.: Contribution of externally bonded FRP to shear capacity of RC flexural members. J. Compos. Constr. 2(4), 195–202 (1998)

    Article  Google Scholar 

  69. Serbescu, A.; Guadagnini, M.; Pilakoutas, K.: Standardised double-shear test for determining bond of FRP to concrete and corresponding model development. Compos. B. Eng. 55, 277–297 (2013). https://doi.org/10.1016/j.compositesb.2013.06.019

    Article  Google Scholar 

  70. Yang, Y.X.; Yue, Q.R.; Hu, Y.C.: Experimental study on bond performance between carbon fiber sheets and concrete. J. Build. Struct. 2001(3), 36–41 (2001)

    Google Scholar 

  71. Wang, M.; Yang, X.; Wang, W.: Establishing a 3D aggregates database from X-ray CT scans of bulk concrete. Constr. Build. Mater. 315, 125740 (2022). https://doi.org/10.1016/j.conbuildmat.2021.125740

    Article  Google Scholar 

  72. Zhang, C.; Abedini, M.: Application of Lagrangian approach to generate P-I diagrams for RC columns exposed to extreme dynamic loading. Adv. Concr. Constr. 14(3), 153–167 (2022)

    Google Scholar 

  73. Zhang, Z.; Li, W.; Yang, J.: Analysis of stochastic process to model safety risk in construction industry. J. Civ. Eng. Manag. 27(2), 87–99 (2021). https://doi.org/10.3846/jcem.2021.14108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Appendices

Appendix 1

1.1 CF Model

$$\begin{aligned} {\text{Input}}\;{\text{data }} &= \, \left[ {f_{ck} = \, 0.{2}0{4},b_{c} = \, 0.{133},E_{f} = \, 0.{247}, }\right. \\ & \quad \left.{f_{f} = \, 0.{225},t_{f} = \, 0.0{862}, }\right. \\ & \quad \left.{b_{f} = \, 0.{267},L_{f} = \, 0.{212}} \right] \end{aligned}$$
$$P_{u} = \, 0.{136}f_{ck} + \, 0.{249}b_{c} + \, 0.0{234}E_{f} {-} \, 0.0{379}f_{f} + \, 0.0{982}t_{f} + \, 0.{344}b_{f} + \, 0.{1855}L_{f} - \, 0.0{7575}$$
(37)
$$P_{u,normalized} = 0.{136 } \times 0.{2}0{4} + 0.{249 } \times 0.{133} + 0.0{234 } \times 0.{247}{-}0.0{379 } \times 0.{225} + 0.0{982} \times 0.0{862} + 0.{344} \times 0.{267} + 0.{1855 } \times 0.{212} - 0.0{7575} = 0.{122}$$
(38)
$$P_{u} = \left( {\frac{{P_{u,normalized} }}{0.8} \times 62.4} \right) + 2.4$$
(39)
$$P_{u} = \left( {\frac{0.122}{{0.8}} \times 62.4} \right) + 2.4 = 11.92 kN$$
(40)

The bond strength value obtained by CF model is 11.92 kN, which deviates significantly from the experimental result of Pu = 14.89 kN. Specifically, the bond strength predicted by the CF model is found to be 19.95% lower than the experimental value.

Appendix 2

2.1 ANFIS Model

Input data = [fck = 0.204, bc = 0.133, Ef = 0.247, ff = 0.225, tf = 0.0862, bf = 0.267, Lf = 0.212]

$$W_{1} = \left[ {exp\left( { - \frac{1}{2}\left( {\frac{{f_{ck} - c_{1} }}{{\sigma_{1} }}} \right)^{2} } \right)} \right] \times \left[ {exp\left( { - \frac{1}{2}\left( {\frac{{b_{c} - c_{2} }}{{\sigma_{2} }}} \right)^{2} } \right)} \right] \times \left[ {exp\left( { - \frac{1}{2}\left( {\frac{{E_{f} - c_{3} }}{{\sigma_{3} }}} \right)^{2} } \right)} \right] \times \left[ {exp\left( { - \frac{1}{2}\left( {\frac{{f_{f} - c_{4} }}{{\sigma_{4} }}} \right)^{2} } \right)} \right] \times \left[ {exp\left( { - \frac{1}{2}\left( {\frac{{t_{f} - c_{5} }}{{\sigma_{5} }}} \right)^{2} } \right)} \right] \times \left[ {exp\left( { - \frac{1}{2}\left( {\frac{{b_{f} - c_{6} }}{{\sigma_{6} }}} \right)^{2} } \right)} \right] \times \left[ {exp\left( { - \frac{1}{2}\left( {\frac{{L_{f} - c_{7} }}{{\sigma_{7} }}} \right)^{2} } \right)} \right]$$
(41)
$$Y_{1} = \user2{ }0.09646{ }f_{ck} { } - 1.026{ }b_{c} + { }0.3985{ }E_{f} { } - 6.1{ }f_{f} + { }2.711{ }t_{f} + { }0.2437{ }b_{f} + { }0.7315{ }L_{f} + \user2{ }2.443$$
(42)
$$\frac{{W_{1} Y_{1} + W_{2} Y_{1} + W_{3} Y_{3} + \ldots + W_{28} Y_{28} }}{{W_{1} + W_{2} + W_{3} + \ldots + W_{28} }} = \frac{0.1552}{{1.000}} = 0.1552\user2{ }$$
(43)
$$P_{u} = \left( {\frac{0.155}{{0.8}} \times 62.4} \right) + 2.4 = 14.50 kN$$
(44)

The bond strength value obtained by ANFIS model is 14.50 kN, which is near to the experimental result of Pu = 14.89 kN. Specifically, the bond strength predicted by the ANFIS model is found to be 2.62% lower than the experimental value.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Arora, H.C., Kumar, K. et al. Development of Efficient Prediction Model of FRP-to-Concrete Bond Strength Using Curve Fitting and ANFIS Methods. Arab J Sci Eng 49, 5129–5158 (2024). https://doi.org/10.1007/s13369-023-08328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08328-0

Keywords

Navigation