Skip to main content
Log in

La-doped TiO2 Nanoparticles for Photocatalysis: Synthesis, Activity in Terms of Degradation of Methylene Blue Dye and Regeneration of Used Nanoparticles

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, bare and Lanthanum (La)-doped TiO2 photocatalysts Ti1−xLaxO2 (x = 0.00–0.025) were prepared by employing a solution-combustion procedure. In this, citric acid was utilized as fuel and as a complexing agent. The prepared photocatalysts were characterized by FTIR, FE-SEM, XRD, DRS and XPS. The XRD confirms that prepared TiO2 photocatalysts have only the anatase phase, and also, crystallite size was calculated which is 30.16 and 19.90 nm for bare and Ti0.985La0.015O2, respectively. The DRS shows that with increasing the doping concentration of La in TiO2, a continuous shifting in absorbance towards the visible light region was observed. The FTIR determines the O–H band, Ti–O–La, and several other functional groups present in the synthesized bare and La-doped TiO2 photocatalysts. The XPS spectra confirm the existence of all expected elements (Ti, O, and La) in the synthesized photocatalysts. The FE-SEM confirms spherical shape of prepared photocatalysts, and particle size of bare and Ti0.985La0.015O2 was 32.28 and 22.24 nm, respectively, which agrees with XRD data. Photocatalytic breakdown of methylene blue (MB) dye in its aqueous solutions of different concentrations (10, 20, 30, 40 and 50 ppm) was found to be first order. The best activity was shown by Ti0.985La0.015O2, and it was better than the commercial aeroxide P-25 photocatalyst. The Ti0.985La0.015O2 catalyst could be regenerated and reused up to five times with a minor loss in degradation efficiency of MB dye (30 ppm) about 7.85% at the end of fifth cycle, however, with fresh catalyst degradation was 88.71%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rasalingam, S.; Peng, R.; Koodali, R.T.: An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials. Appl. Catal. B Environ. 174–175, 49–59 (2015). https://doi.org/10.1016/j.apcatb.2015.02.040

    Article  Google Scholar 

  2. Bhatti, H.N.; Akhtar, N.; Saleem, N.: Adsorptive removal of methylene blue by low-cost citrus sinensis bagasse: equilibrium, kinetic and thermodynamic characterization. Arab. J. Sci. Eng. 37, 9–18 (2012). https://doi.org/10.1007/s13369-011-0158-1

    Article  Google Scholar 

  3. Li, H.; Budarin, V.L.; Clark, J.H.; North, M.; Wu, X.: Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: mechanism and porosity dependence. J. Hazard. Mater. 436, 129174 (2022). https://doi.org/10.1016/j.jhazmat.2022.129174

    Article  Google Scholar 

  4. Gautam, A.; Kumar Mondal, M.: Post-combustion capture of CO2 using novel aqueous triethylenetetramine and 2-dimethylaminoethanol amine blend: equilibrium CO2 loading-empirical model and optimization, CO2 desorption, absorption heat, and 13C NMR analysis. Fuel 331, 125864 (2023). https://doi.org/10.1016/j.fuel.2022.125864

    Article  Google Scholar 

  5. Arslan, I.; Balcioglu, I.A.: Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study. Dye. Pigment. 43, 95–108 (1999). https://doi.org/10.1016/S0143-7208(99)00048-0

    Article  Google Scholar 

  6. Aboua, K.N.; Yobouet, Y.A.; Yao, K.B.; Goné, D.L.; Trokourey, A.: Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit. J. Environ. Manag. 156, 10–14 (2015). https://doi.org/10.1016/j.jenvman.2015.03.006

    Article  Google Scholar 

  7. Bouazizi, A.; Breida, M.; Achiou, B.; Ouammou, M.; Calvo, J.I.; Aaddane, A.; Younssi, S.A.: Removal of dyes by a new nano–TiO2 ultrafiltration membrane deposited on low-cost support prepared from natural Moroccan bentonite. Appl. Clay Sci. 149, 127–135 (2017). https://doi.org/10.1016/j.clay.2017.08.019

    Article  Google Scholar 

  8. Sahinkaya, E.; Sahin, A.; Yurtsever, A.; Kitis, M.: Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater. J. Environ. Manag. 222, 420–427 (2018). https://doi.org/10.1016/j.jenvman.2018.05.057

    Article  Google Scholar 

  9. Galindo, C.; Jacques, P.; Kalt, A.: Photooxidation of the phenylazonaphthol AO20 on TiO2: Kinetic and mechanistic investigations. Chemosphere 45, 997–1005 (2001). https://doi.org/10.1016/S0045-6535(01)00118-7

    Article  Google Scholar 

  10. Gupta, A.; Khosla, N.; Govindasamy, V.; Saini, A.; Annapurna, K.; Dhakate, S.R.: Trimetallic composite nanofibers for antibacterial and photocatalytic dye degradation of mixed dye water. Appl. Nanosci. 10, 4191–4205 (2020). https://doi.org/10.1007/s13204-020-01540-6

    Article  Google Scholar 

  11. Kumari, P.; Kumar, A.: Advanced oxidation process: a remediation technique for organic and non-biodegradable pollutant. Results Surf. Interfaces 11, 100122 (2023). https://doi.org/10.1016/j.rsurfi.2023.100122

    Article  Google Scholar 

  12. Davarnejad, R.; Vasheghani Farahani, J.; Azizi, J.: Petrochemical alcoholic wastewater treatment using an advanced oxidation process: an intensified process for treating an industrial wastewater. Arab. J. Sci. Eng. 48, 9159–9169 (2023). https://doi.org/10.1007/s13369-022-07164-y

    Article  Google Scholar 

  13. Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K.: A detailed review on advanced oxidation process in treatment of wastewater: mechanism, challenges and future outlook. Chemosphere 308, 136524 (2022). https://doi.org/10.1016/j.chemosphere.2022.136524

    Article  Google Scholar 

  14. Chen, C.; Zhao, W.; Li, J.; Zhao, J.; Hidaka, H.; Serpone, N.: Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO2 dispersion. Environ. Sci. Technol. 36, 3604–3611 (2002). https://doi.org/10.1021/es0205434

    Article  Google Scholar 

  15. Wang, J.; Li, J.; Xie, Y.; Li, C.; Han, G.; Zhang, L.; Xu, R.; Zhang, X.: Investigation on solar photocatalytic degradation of various dyes in the presence of Er3+:YAlO3/ZnO–TiO2 composite. J. Environ. Manag. 91, 677–684 (2010). https://doi.org/10.1016/j.jenvman.2009.09.031

    Article  Google Scholar 

  16. Wang, F.; Xu, M.; Wei, L.; Wei, Y.; Hu, Y.; Fang, W.; Zhu, C.G.: Fabrication of La-doped TiO2 film electrode and investigation of its electrocatalytic activity for furfural reduction. Electrochim. Acta 153, 170–174 (2015). https://doi.org/10.1016/j.electacta.2014.11.203

    Article  Google Scholar 

  17. Shi, H.; Zhang, T.; Wang, H.: Preparation and photocatalytic activity of La3+ and Eu3+ co-doped TiO2 nanoparticles: photo-assisted degradation of methylene blue. J. Rare Earths 29, 746–752 (2011). https://doi.org/10.1016/S1002-0721(10)60535-2

    Article  Google Scholar 

  18. Zhou, J.; Takeuchi, M.; Ray, A.K.; Anpo, M.; Zhao, X.S.: Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation. J. Colloid Interface Sci. 311, 497–501 (2007). https://doi.org/10.1016/j.jcis.2007.03.007

    Article  Google Scholar 

  19. Zhang, Y.; Zhang, H.; Xu, Y.; Wang, Y.: Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties. J. Mater. Chem. 13, 2261–2265 (2003). https://doi.org/10.1039/b305538h

    Article  Google Scholar 

  20. Koepke, C.; Wisniewski, K.; Sikorski, L.; Piatkowski, D.; Kowalska, K.; Naftaly, M.: Upconverted luminescence under 800 nm laser diode excitation in Nd3+-activated fluoroaluminate glass. Opt. Mater. (Amst) 28, 129–136 (2006). https://doi.org/10.1016/j.optmat.2004.10.034

    Article  Google Scholar 

  21. Zhu, J.; Zhu, K.; Chen, L.: Influence of gold nanoparticles on the up-conversion fluorescence in Sm3+. J. Non Cryst. Solids 352, 150–154 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.11.010

    Article  Google Scholar 

  22. Ranjit, K.T.; Willner, I.; Bossmann, S.H.; Braun, A.M.: Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environ. Sci. Technol. 35, 1544–1549 (2001). https://doi.org/10.1021/es001613e

    Article  Google Scholar 

  23. Gâcon, J.C.; Horchani, K.; Jouini, A.; Dujardin, C.; Kamenskikh, I.: Optical properties of praseodymium concentrated phosphates. Opt. Mater. (Amst) 28, 14–20 (2006). https://doi.org/10.1016/j.optmat.2004.10.027

    Article  Google Scholar 

  24. Linsebigler, A.L.; Lu, G.; Yates, J.T.: Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995). https://doi.org/10.1021/cr00035a013

    Article  Google Scholar 

  25. Serpone, N.; Sauvé, G.; Koch, R.; Tahiri, H.; Pichat, P.; Piccinini, P.; Pelizzetti, E.; Hidaka, H.: Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: relative photonic efficiencies ζr. J. Photochem. Photobiol. A Chem. 94, 191–203 (1996). https://doi.org/10.1016/1010-6030(95)04223-7

    Article  Google Scholar 

  26. Habibi, M.H.; Habibi, A.H.; Zendehdel, M.; Habibi, M.: Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: effect of composite precursors and titania as a blocking layer on photovoltaic performance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 110, 226–232 (2013). https://doi.org/10.1016/j.saa.2013.03.051

    Article  Google Scholar 

  27. Saroj, S.; Singh, L.; Ranjan, R.; Singh, S.V.: Enhancement of photocatalytic activity and regeneration of Fe-doped TiO2 (Ti1−xFexO2) nanocrystalline particles synthesized using inexpensive TiO2 precursor. Res. Chem. Intermed. 45, 1883–1906 (2019). https://doi.org/10.1007/s11164-018-3708-2

    Article  Google Scholar 

  28. Choi, J.; Park, H.; Hoffmann, M.R.: Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783–792 (2010). https://doi.org/10.1021/jp908088x

    Article  Google Scholar 

  29. Tab, A.; Dahmane, M.; Belabed, C.; Bellal, B.; Richard, C.; Trari, M.: High efficiency photocatalytic degradation of ambroxol over Mn doped TiO2: experimental designs, identification of transformation products, mineralization and mechanism. Sci. Total. Environ. (2021). https://doi.org/10.1016/j.scitotenv.2021.146451

    Article  Google Scholar 

  30. Wang, Q.; Rhimi, B.; Wang, H.; Wang, C.: Efficient photocatalytic degradation of gaseous toluene over F-doped TiO2/exfoliated bentonite. Appl. Surf. Sci. 530, 1–12 (2020). https://doi.org/10.1016/j.apsusc.2020.147286

    Article  Google Scholar 

  31. Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V.: Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrog. Energy 45, 7764–7778 (2020). https://doi.org/10.1016/j.ijhydene.2019.07.241

    Article  Google Scholar 

  32. Barkul, R.P.; Sutar, R.S.; Patil, M.K.; Delekar, S.D.: Photocatalytic degradation of organic pollutants by using nanocrystalline boron-doped TiO2 catalysts. Chem. Sel. 6, 3360–3369 (2021). https://doi.org/10.1002/slct.202003910

    Article  Google Scholar 

  33. Saroj, S.; Singh, L.; Singh, S.V.: Solution-combustion synthesis of anion (iodine) doped TiO2 nanoparticles for photocatalytic degradation of Direct Blue 199 dye and regeneration of used photocatalyst. J. Photochem. Photobiol. A Chem. 396, 112532 (2020). https://doi.org/10.1016/j.jphotochem.2020.112532

    Article  Google Scholar 

  34. Kayani, Z.N.; Rahim, S.; Sagheer, R.; Riaz, S.; Naseem, S.: Assessment of antibacterial and optical features of sol-gel dip coated La doped TiO2 thin films. Mater. Chem. Phys. 250, 123217 (2020). https://doi.org/10.1016/j.matchemphys.2020.123217

    Article  Google Scholar 

  35. Kayani, Z.N.; Maria; Riaz, S.; Naseem, S.: Magnetic and antibacterial studies of sol–gel dip coated Ce doped TiO2 thin films: influence of Ce contents. Ceram. Int. 46, 381–390 (2020). https://doi.org/10.1016/j.ceramint.2019.08.272

    Article  Google Scholar 

  36. Madhvi; Singh, L.; Saroj, S.; Lee, Y.; Singh, S.V.: Facile synthesis of nano-crystalline anatase TiO2 and their applications in degradation of direct blue 199. J. Mater. Sci. Mater. Electron. 27, 2581–2588 (2016). https://doi.org/10.1007/s10854-015-4061-5

    Article  Google Scholar 

  37. Saroj, S.; Singh, L.; Singh, S.V.: Photodegradation of direct blue-199 in carpet industry wastewater using iron-doped TiO2 nanoparticles and regenerated photocatalyst. Int. J. Chem. Kinet. 51, 189–205 (2019). https://doi.org/10.1002/kin.21243

    Article  Google Scholar 

  38. Shi, Z.; Zhang, X.; Yao, S.: Preparation and photocatalytic activity of TiO2 nanoparticles co-doped with Fe and la. Particuology. 9, 260–264 (2011). https://doi.org/10.1016/j.partic.2010.05.017

    Article  Google Scholar 

  39. Pascariu, P.; Cojocaru, C.; Homocianu, M.; Samoila, P.; Dascalu, A.; Suchea, M.: New La3+ doped TiO2 nanofibers for photocatalytic degradation of organic pollutants: effects of thermal treatment and doping loadings. Ceram. Int. 48, 4953–4964 (2022). https://doi.org/10.1016/j.ceramint.2021.11.033

    Article  Google Scholar 

  40. Kamble, R.J.; Gaikwad, P.V.; Garadkar, K.M.; Sabale, S.R.; Puri, V.R.; Mahajan, S.S.: Photocatalytic degradation of malachite green using hydrothermally synthesized cobalt-doped TiO2 nanoparticles. J. Iran. Chem. Soc. 19, 303–312 (2022). https://doi.org/10.1007/s13738-021-02303-y

    Article  Google Scholar 

  41. Zhan, C.; Chen, F.; Yang, J.; Dai, D.; Cao, X.; Zhong, M.: Visible light responsive sulfated rare earth doped TiO2@fumed SiO2 composites with mesoporosity: enhanced photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 267, 88–97 (2014). https://doi.org/10.1016/j.jhazmat.2013.12.038

    Article  Google Scholar 

  42. Sibu, C.P.; Kumar, S.R.; Mukundan, P.; Warrier, K.G.K.: Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide. Chem. Mater. 14, 2876–2881 (2002). https://doi.org/10.1021/cm010966p

    Article  Google Scholar 

  43. Nie, J.; Mo, Y.; Zheng, B.; Yuan, H.; Xiao, D.: Electrochemical fabrication of lanthanum-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. Electrochim. Acta 90, 589–596 (2013). https://doi.org/10.1016/j.electacta.2012.12.049

    Article  Google Scholar 

  44. Coromelci, C.; Ignat, M.; Sacarescu, L.; Neamtu, M.: Enhanced visible light activated mesoporous titania by rare earth metal doping. Microporous Mesoporous Mater. 341, 112072 (2022). https://doi.org/10.1016/j.micromeso.2022.112072

    Article  Google Scholar 

  45. Bashir, A.; Bashir, F.; Sultan, M.; Mubeen, M.; Iqbal, A.; Akhter, Z.: Influence of nickel and lanthanum ions co-doping on photocatalytic properties of TiO2 for effective degradation of reactive yellow 145 in the visible region. J. Sol Gel Sci. Technol. 93, 438–451 (2020). https://doi.org/10.1007/s10971-019-05162-5

    Article  Google Scholar 

  46. Köseoʇlu, Y.: Structural and magnetic properties of Cr doped NiZn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique. Ceram. Int. 41, 6417–6423 (2015). https://doi.org/10.1016/j.ceramint.2015.01.079

    Article  Google Scholar 

  47. Mathew, D.S.; Juang, R.S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007). https://doi.org/10.1016/j.cej.2006.11.001

    Article  Google Scholar 

  48. Xue, W.; Zhang, G.; Xu, X.; Yang, X.; Liu, C.; Xu, Y.: Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate. Chem. Eng. J. 167, 397–402 (2011). https://doi.org/10.1016/j.cej.2011.01.007

    Article  Google Scholar 

  49. Yu, L.; Yang, X.; He, J.; He, Y.; Wang, D.: One-step hydrothermal method to prepare nitrogen and lanthanum co-doped TiO2 nanocrystals with exposed {0 0 1} facets and study on their photocatalytic activities in visible light. J. Alloys Compd. 637, 308–314 (2015). https://doi.org/10.1016/j.jallcom.2015.03.035

    Article  Google Scholar 

  50. Lei, X.F.; Chen, C.; Li, X.; Xue, X.X.; Yang, H.: Characterization and photocatalytic performance of la and C co-doped anatase TiO2 for photocatalytic reduction of Cr(VI). Sep. Purif. Technol. 161, 8–15 (2016). https://doi.org/10.1016/j.seppur.2016.01.030

    Article  Google Scholar 

  51. Han, M.; Dong, Z.; Liu, J.; Ren, G.; Ling, M.; Yang, X.; Zhang, L.; Xue, B.; Li, F.: The role of lanthanum in improving the visible-light photocatalytic activity of TiO2 nanoparticles prepared by hydrothermal method. Appl. Phys. A Mater. Sci. Process. 126, 1–10 (2020). https://doi.org/10.1007/s00339-020-04135-8

    Article  Google Scholar 

  52. Parthasarathy, P.; Narayanan, S.K.: Effect of hydrothermal carbonization reaction parameters on. Environ. Prog. Sustain. Energy 33, 676–680 (2014). https://doi.org/10.1002/ep.11974

    Article  Google Scholar 

  53. Cong, Y.; Tian, B.; Zhang, J.: Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping. Appl. Catal. B Environ. 101, 376–381 (2011). https://doi.org/10.1016/j.apcatb.2010.10.006

    Article  Google Scholar 

  54. Liqiang, J.; Xiaojun, S.; Baifu, X.; Baiqi, W.; Weimin, C.; Honggang, F.: The preparation and characterization of la doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 177, 3375–3382 (2004). https://doi.org/10.1016/j.jssc.2004.05.064

    Article  Google Scholar 

  55. Lan, X.; Wang, L.; Zhang, B.; Tian, B.; Zhang, J.: Preparation of lanthanum and boron co-doped TiO2 by modified sol-gel method and study their photocatalytic activity. Catal. Today 224, 163–170 (2014). https://doi.org/10.1016/j.cattod.2013.10.062

    Article  Google Scholar 

  56. Yu, L.; Yang, X.; He, J.; He, Y.; Wang, D.: A fluorine free method to synthesize nitrogen and lanthanum co-doped TiO2 nanocrystals with exposed {0 0 1} facets for enhancing visible-light photocatalytic activity. J. Mol. Catal. A Chem. 399, 42–47 (2015). https://doi.org/10.1016/j.molcata.2015.01.022

    Article  Google Scholar 

  57. Li, J.; Zeng, Y.; Fang, Y.; Chen, N.; Du, G.; Zhang, A.: Synthesis of (La+Nb) co-doped TiO2 rutile nanoparticles and dielectric properties of their derived ceramics composed of submicron-sized grains. Ceram. Int. 47, 8859–8867 (2021). https://doi.org/10.1016/j.ceramint.2020.12.007

    Article  Google Scholar 

  58. Zhao, N.; Yao, M.M.; Li, F.; Lou, F.P.: Microstructures and photocatalytic properties of Ag and La surface codoped TiO2 films prepared by solgel method. J. Solid State Chem. 184, 2770–2775 (2011). https://doi.org/10.1016/j.jssc.2011.08.014

    Article  Google Scholar 

  59. Wu, H.H.; Deng, L.X.; Wang, S.R.; Zhu, B.L.; Huang, W.P.; Wu, S.H.; Zhang, S.M.: The preparation and characterization of la doped TiO2 nanotubes and their photocatalytic activity. J. Dispers. Sci. Technol. 31, 1311–1316 (2010). https://doi.org/10.1080/01932690903227071

    Article  Google Scholar 

  60. Nur, A.S.M.; Sultana, M.; Mondal, A.; Islam, S.; Robel, F.N.; Islam, A.; Sumi, M.S.A.: A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. J. Water Process Eng. 47, 102728 (2022). https://doi.org/10.1016/j.jwpe.2022.102728

    Article  Google Scholar 

  61. Banu, R.; Salvi, N.; Gupta, S.; Ameta, C.; Ameta, R.; Punjabi, P.B.: A facile Synthesis of GO/CuO nanocomposite with enhancing photocatalytic activity for the degradation of azure-B dye and its antimicrobial behavior. Arab. J. Sci. Eng. 47, 365–378 (2022). https://doi.org/10.1007/s13369-021-05421-0

    Article  Google Scholar 

  62. John Jeya Kamaraj, J.J.; Annamalai, P.; Stephen Tamil, L.D.; Muthu, S.P.; Perumalsamy, R.; Valdes, H.: Enhanced photocatalytic degradation of ZnTiO3/polycarbazole (PCz) composite towards toxic azo dye. Arab. J. Sci. Eng. 48, 8143–8151 (2023). https://doi.org/10.1007/s13369-022-07570-2

    Article  Google Scholar 

  63. Jasim, S.A.; Patra, I.; Abdulhadi, A.M.; Al-Gazally, M.E.; Sharma, H.; Alawsi, T.; Mohammed, H.T.; Hussein, S.A.; Altimari, U.S.; Hammid, A.T.; Chem, C.: Magnetic CeO2/SrFe12O19 nanocomposite: synthesis, characterization and photocatalytic degradation of methyl orange. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07044-5

    Article  Google Scholar 

  64. Raza, W.; Haque, M.M.; Muneer, M.; Fleisch, M.; Hakki, A.; Bahnemann, D.: Photocatalytic degradation of different chromophoric dyes in aqueous phase using la and Mo doped TiO2 hybrid carbon spheres. J. Alloys Compd. 632, 837–844 (2015). https://doi.org/10.1016/j.jallcom.2015.01.222

    Article  Google Scholar 

  65. Bayan, E.M.; Lupeiko, T.G.; Pustovaya, L.E.; Volkova, M.G.: Synthesis and photocatalytic properties of Sn–TiO2 nanomaterials. J. Adv. Dielectr. 10, 1–10 (2020). https://doi.org/10.1142/S2010135X20600188

    Article  Google Scholar 

  66. Nyamukamba, P.; Tichagwa, L.; Mamphweli, S.; Petrik, L.: Silver/carbon Co doped titanium dioxide photocatalyst for improved dye degradation under visible light. Int. J. Photoenergy (2017). https://doi.org/10.1155/2017/3079276

    Article  Google Scholar 

  67. Cheng, X.Q.; Ma, C.Y.; Yi, X.Y.; Yuan, F.; Xie, Y.; Hu, J.M.; Hu, B.C.; Zhang, Q.Y.: Structural, morphological, optical and photocatalytic properties of Gd-doped TiO2 films. Thin Solid Films 615, 13–18 (2016). https://doi.org/10.1016/j.tsf.2016.06.049

    Article  Google Scholar 

  68. Ebrahimi, R.; Maleki, A.; Rezaee, R.; Daraei, H.; Safari, M.; McKay, G.; Lee, S.M.; Jafari, A.: Synthesis and application of Fe-doped TiO2 nanoparticles for photodegradation of 2,4-D from aqueous solution. Arab. J. Sci. Eng. 46, 6409–6422 (2021). https://doi.org/10.1007/s13369-020-05071-8

    Article  Google Scholar 

  69. Sikirman, A.; Krishnan, J.: Photocatalytic degradation of methylene blue by nanosized visible light active nitrogen and iron Co doped titania: characterization and feasibility investigation. J. Environ. Eng. 142, 1–8 (2016). https://doi.org/10.1061/(asce)ee.1943-7870.0001028

    Article  Google Scholar 

  70. Ilkhechi, N.N.; Ghobadi, N.; Akbarpour, M.R.: Enhanced optical and photo catalytic properties of V and La co doped TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 6426–6434 (2017). https://doi.org/10.1007/s10854-016-6328-x

    Article  Google Scholar 

Download references

Acknowledgements

No external grant was received.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Vir Singh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V., Singh, S.V. La-doped TiO2 Nanoparticles for Photocatalysis: Synthesis, Activity in Terms of Degradation of Methylene Blue Dye and Regeneration of Used Nanoparticles. Arab J Sci Eng 48, 16431–16443 (2023). https://doi.org/10.1007/s13369-023-08325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08325-3

Keywords

Navigation