Skip to main content
Log in

Development of Polyaniline/Polyvinylpyrrolidone (PANI/PVP) Composite Films for Piezoresistive Strain-Sensing Applications

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, a novel study is reported to measure the strain-sensing properties of PANI/PVP conductive thermoplastic composite with varying concentrations of dodecylbenzene sulfonic acid-doped polyaniline (DBSA-PANI). Solution mixing for thermoplastic polyvinyl pyrrolidone (PVP) and DBSA-doped polyaniline has been adopted. Fourier transform infrared spectroscopy (FTIR) investigated the interaction between the composite film components. Thermal stability for PANI/PVP composite films is verified by a thermogravimetric analyzer. Electrochemical impedance spectroscopy is studied for charge conduction properties. The electrical conductivity and strain-dependent conductivity behavior of these composites are studied. Results revealed that with the increasing concentration of DBSA-PANI, the conductivity of PVP-PANI composite films is acutely affected. Herein, sensitivity improved with DBSA-PANI loading. The piezoresistive properties of PANI/PVP sensors exhibit considerable recovery and repeatability for 10 cycles up to a strain of 30%. The composite film with 10% PANI loading illustrated a gauge factor of 3.13. 3.14, and 3.26 for 10%, 20%, and 30% strain respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9

Similar content being viewed by others

References

  1. Dhanabalan, S.S.; Sitharthan, R.; Madurakavi, K.; Thirumurugan, A.; Rajesh, M.; Avaninathan, S.R.; Carrasco, M.F.: Flexible compact system for wearable health monitoring applications. Comput. Electr. Eng. 102, 108130 (2022). https://doi.org/10.1016/J.COMPELECENG.2022.108130

    Article  Google Scholar 

  2. Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B.: Nanomaterials-enabled water and wastewater treatment. NanoImpact 3–4, 22–39 (2016). https://doi.org/10.1016/J.IMPACT.2016.09.004

    Article  Google Scholar 

  3. Lee, Y.; Kim, J.; Joo, H.; Raj, M.S.; Ghaffari, R.; Kim, D.H.: Wearable sensing systems with mechanically soft assemblies of nanoscale materials. Adv. Mater. Technol. 2, 1700053 (2017). https://doi.org/10.1002/ADMT.201700053

    Article  Google Scholar 

  4. Gong, T.; Zhang, H.; Huang, W.; Mao, L.; Ke, Y.; Gao, M.; Yu, B.: Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring. Carbon N. Y. 140, 286–295 (2018). https://doi.org/10.1016/J.CARBON.2018.09.007

    Article  Google Scholar 

  5. Liu, Y.; Pharr, M.; Salvatore, G.A.: Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017). https://doi.org/10.1021/ACSNANO.7B04898/ASSET/IMAGES/MEDIUM/NN-2017-04898T_0010.GIF

    Article  Google Scholar 

  6. Bao, Z.; Chen, X.; Bao, Z.; Chen, X.: Flexible and stretchable devices. Adv. Mater. 28, 4177–4179 (2016). https://doi.org/10.1002/ADMA.201601422

    Article  Google Scholar 

  7. Güder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T.J.; Whitesides, G.M.: Paper-based electrical respiration sensor. Angew. Chemie Int. Ed. 55, 5727–5732 (2016). https://doi.org/10.1002/ANIE.201511805

    Article  Google Scholar 

  8. Qian, Q.; Wang, Y.; Zhang, M.; Chen, L.; Feng, J.; Wang, Y.; Zhou, Y.: Ultrasensitive paper-based polyaniline/graphene composite strain sensor for sign language expression. Compos. Sci. Technol. 181, 107660 (2019). https://doi.org/10.1016/J.COMPSCITECH.2019.05.017

    Article  Google Scholar 

  9. Zang, Y.; Zhang, F.; Huang, D.; Gao, X.; Di, C.A.; Zhu, D.: Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 2015 61(6), 1–9 (2015). https://doi.org/10.1038/ncomms7269

    Article  Google Scholar 

  10. Liao, C.; Zhang, M.; Yu Yao, M.; Hua, T.; Li, L.; Yan, F.; Liao, C.; Zhang, M.; Yan, F.; Yao, M.Y.; Hua, T.; Li, L.: Flexible organic electronics in biology: materials and devices. Adv. Mater. 27, 7493–7527 (2015). https://doi.org/10.1002/ADMA.201402625

    Article  Google Scholar 

  11. Jevtics, D.; Hurtado, A.; Guilhabert, B.; McPhillimy, J.; Cantarella, G.; Gao, Q.; Tan, H.H.; Jagadish, C.; Strain, M.J.; Dawson, M.D.: Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate. Nano Lett. 17, 5990–5994 (2017). https://doi.org/10.1021/ACS.NANOLETT.7B02178/SUPPL_FILE/NL7B02178_SI_001.PDF

    Article  Google Scholar 

  12. Duan, L.; Dhooge, D.’R.; Cardon, L.: Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog. Mater. Sci. 114, 100617 (2020). https://doi.org/10.1016/J.PMATSCI.2019.100617

    Article  Google Scholar 

  13. Hwang, B.U.; Lee, J.H.; Trung, T.Q.; Roh, E.; Kim, DIl.; Kim, S.W.; Lee, N.E.: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9, 8801–8810 (2015). https://doi.org/10.1021/ACSNANO.5B01835/SUPPL_FILE/NN5B01835_SI_001.PDF

    Article  Google Scholar 

  14. Yan, C.; Wang, J.; Kang, W.; Cui, M.; Wang, X.; Yao Foo, C.; Jianzhi Chee, K.; See Lee, P.; Yan, C.Y.; Wang, J.X.; Kang, W.B.; Cui, M.Q.; Wang, X.; Foo, C.Y.; Chee, K.J.; Lee, P.S.: Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022–2027 (2014). https://doi.org/10.1002/ADMA.201304742

    Article  Google Scholar 

  15. Muth, J.T.; Vogt, D.M.; Truby, R.L.; Mengüç, Y.; Kolesky, D.B.; Wood, R.J.; Lewis, J.A.: Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014). https://doi.org/10.1002/ADMA.201400334

    Article  Google Scholar 

  16. Zhang, B.; Lei, J.; Qi, D.; Liu, Z.; Wang, Y.; Xiao, G.; Wu, J.; Zhang, W.; Huo, F.; Chen, X.; Zhang, B.; Lei, J.; Wang, Y.; Xiao, G.; Wu, J.; Zhang, W.; Huo, F.; Qi, D.; Liu, Z.; Chen, X.: Stretchable conductive fibers based on a cracking control strategy for wearable electronics. Adv. Funct. Mater. 28, 1801683 (2018). https://doi.org/10.1002/ADFM.201801683

    Article  Google Scholar 

  17. Duyen Ho, M.; Ling, Y.; Wei Yap, L.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W.; Ho, M.D.; Ling, Y.; Yap, L.W.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W.: Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 27, 1700845 (2017). https://doi.org/10.1002/ADFM.201700845

    Article  Google Scholar 

  18. Boland, C.S.; Khan, U.; Backes, C.; O’Neill, A.; McCauley, J.; Duane, S.; Shanker, R.; Liu, Y.; Jurewicz, I.; Dalton, A.B.; Coleman, J.N.: Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8, 8819–8830 (2014). https://doi.org/10.1021/NN503454H/SUPPL_FILE/NN503454H_SI_001.PDF

    Article  Google Scholar 

  19. Bhadra, J.; Madi, N.K.; Al-Thani, N.J.; Al-Maadeed, M.A.: Polyaniline/polyvinyl alcohol blends: effect of sulfonic acid dopants on microstructural, optical, thermal and electrical properties. Synth. Met. 191, 126–134 (2014). https://doi.org/10.1016/J.SYNTHMET.2014.03.003

    Article  Google Scholar 

  20. Rashid, I.A.; Irfan, M.S.; Gill, Y.Q.; Nazar, R.; Saeed, F.; Afzal, A.; Ehsan, H.; Qaiser, A.A.; Shakoor, A.: Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends. Polym. Bull. 77, 1081–1093 (2020). https://doi.org/10.1007/S00289-019-02796-X/FIGURES/8

    Article  Google Scholar 

  21. Costa, P.; Oliveira, J.; Horta-Romarís, L.; Abad, M.J.; Moreira, J.A.; Zapiráin, I.; Aguado, M.; Galván, S.; Lanceros-Mendez, S.: Piezoresistive polymer blends for electromechanical sensor applications. Compos. Sci. Technol. 168, 353–362 (2018). https://doi.org/10.1016/J.COMPSCITECH.2018.10.022

    Article  Google Scholar 

  22. Teixeira, J.; Horta-Romarís, L.; Abad, M.J.; Costa, P.; Lanceros-Méndez, S.: Piezoresistive response of extruded polyaniline/(styrene-butadiene-styrene) polymer blends for force and deformation sensors. Mater. Des. 141, 1–8 (2018). https://doi.org/10.1016/J.MATDES.2017.12.011

    Article  Google Scholar 

  23. Khan, H.U.; Tariq, M.; Shah, M.; Ullah, S.; Ahsan, A.R.; Rahim, A.; Iqbal, J.; Pasricha, R.; Ismail, I.: Designing and development of polyvinylpyrrolidone-tungsten trioxide (PVP-WO3) nanocomposite conducting film for highly sensitive, stable, and room temperature humidity sensing. Mater. Sci. Semicond. Process. 134, 106053 (2021). https://doi.org/10.1016/J.MSSP.2021.106053

    Article  Google Scholar 

  24. Ren, M.; Sun, Z.; Zhang, M.; Yang, X.; Guo, D.; Dong, S.; Dhakal, R.; Yao, Z.; Li, Y.; Kim, N.Y.: A high-performance wearable pressure sensor based on an MXene/PVP composite nanofiber membrane for health monitoring. Nanoscale Adv. 4, 3987–3995 (2022). https://doi.org/10.1039/D2NA00339B

    Article  Google Scholar 

  25. De Queiroz, A.A.A.; Trio, D.; Soares, A.W.; Trzesniak, P.; Abraham, G.A.: Resistive-type humidity sensors based on PVP-Co and PVP-I 2 complexes. J Polym Sci B Polym Phys. 39, 459–469 (2001). https://doi.org/10.1002/1099-0488

    Article  Google Scholar 

  26. Azmer, M.I.; Zafar, Q.; Ahmad, Z.; Sulaiman, K.: Humidity sensor based on electrospun MEH-PPV:PVP microstructured composite. RSC Adv. 6, 35387–35393 (2016). https://doi.org/10.1039/C6RA03628G

    Article  Google Scholar 

  27. Nazar, R.; Qaiser, A.A.; Mehmood, U.; Irfan, M.S.; Sharif, S.: Development of polyaniline/ethylene propylene diene monomer rubber (PANI/EPDM) conductive blend by in situ polymerization technique. J. Mater. Sci. Mater. Electron. 33, 14805–14815 (2022). https://doi.org/10.1007/S10854-022-08400-9/TABLES/6

    Article  Google Scholar 

  28. Zhang, L.; Long, Y.; Chen, Z.; Wan, M.: The effect of hydrogen bonding on self-assembled polyaniline nanostructures. Adv. Funct. Mater. 14, 693–698 (2004). https://doi.org/10.1002/ADFM.200305020

    Article  Google Scholar 

  29. Zujovic, Z.D.; Laslau, C.; Bowmaker, G.A.; Kilmartin, P.A.; Webber, A.L.; Brown, S.P.; Travas-Sejdic, J.: Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules 43, 662–670 (2010). https://doi.org/10.1021/MA902109R/SUPPL_FILE/MA902109R_SI_001.PDF

    Article  Google Scholar 

  30. Baganizi, D.R.; Nyairo, E.; Duncan, S.A.; Singh, S.R.; Dennis, V.A.: Interleukin-10 conjugation to Carboxylated PVP-coated silver nanoparticles for improved stability and therapeutic efficacy. Nanomater 7, 165 (2017). https://doi.org/10.3390/NANO7070165

    Article  Google Scholar 

  31. Rahma, A.; Munir, M.M.; Khairurrijal; Prasetyo, A.; Suendo, V.; Rachmawati, H.: Intermolecular interactions and the release pattern of electrospun curcumin-Polyvinyl(pyrrolidone). Fiber. Biol. Pharm. Bull. 39, 163–173 (2016). https://doi.org/10.1248/BPB.B15-00391

    Article  Google Scholar 

  32. Pan, W.; Qu, L.; Chen, Y.: Conductive blends of dodecylbenzene sulfonic acid-doped polyaniline with poly (vinyl pyrrolidone). Optoelectron. Adv. Mater. Rapid Commun. 4, 2123–2128 (2010)

    Google Scholar 

  33. Subramanian, E.; Anitha, G.; Vijayakumar, N.: Constructive modification of conducting polyaniline characteristics in unusual proportion through nanomaterial blend formation with the neutral polymer poly(vinyl pyrrolidone). J. Appl. Polym. Sci. 106, 673–683 (2007). https://doi.org/10.1002/APP.26566

    Article  Google Scholar 

  34. Zou, Z.; Cheng, H.; Wang, J.; Han, X.: Pyrolyzed titanium dioxide/polyaniline as an efficient non-noble metal electrocatalyst for oxygen reduction reaction. Chinese J. Catal. 36, 414–424 (2015). https://doi.org/10.1016/S1872-2067(14)60223-0

    Article  Google Scholar 

  35. Ghosh, P.; Siddhanta, S.K.; Chakrabarti, A.: Characterization of poly(vinyl pyrrolidone) modified polyaniline prepared in stable aqueous medium. Eur. Polym. J. 35, 699–710 (1999). https://doi.org/10.1016/S0014-3057(98)00157-8

    Article  Google Scholar 

  36. Bhadra, J.; Al-Thani, N.J.; Madi, N.K.; Al-Maadeed, M.A.: Effects of aniline concentrations on the electrical and mechanical properties of polyaniline polyvinyl alcohol blends. Arab. J. Chem. 10, 664–672 (2017). https://doi.org/10.1016/J.ARABJC.2015.04.017

    Article  Google Scholar 

  37. Gong, X.X.; Fei, G.T.; Fu, W.B.; Fang, M.; Gao, X.D.; Zhong, B.N.; Zhang, L.D.: Flexible strain sensor with high performance based on PANI/PDMS films. Org. Electron. 47, 51–56 (2017). https://doi.org/10.1016/J.ORGEL.2017.05.001

    Article  Google Scholar 

  38. Haseeb ur Rehman, M.; Nazar, R.; Yasin, S.; Ramzan, N.; Habib, M.S.: Development of PANI-TPU/MWCNTs based nanocomposites for piezoresistive strain sensing applications. Mater Lett 328, 133110 (2022). https://doi.org/10.1016/J.MATLET.2022.133110

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed at the Chemical Synthesis Labs of the Polymer and Process Engineering Department & Metallurgical department of the University of Engineering and Technology. The authors acknowledge the contribution of the laboratory staff for their continuous support throughout the execution of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Nazar.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 84 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, N., Nazar, R., Mehmood, U. et al. Development of Polyaniline/Polyvinylpyrrolidone (PANI/PVP) Composite Films for Piezoresistive Strain-Sensing Applications. Arab J Sci Eng 48, 16419–16429 (2023). https://doi.org/10.1007/s13369-023-08324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08324-4

Keywords

Navigation