Skip to main content
Log in

Charge Particle Spectroscopy: A Solid-State Nuclear Track Detector (SSNTD)-Based Spectrometer

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study presents a charged particle spectrometer with an aluminum range filter attached to a CR-39 detector that does not need a calibration curve of energy versus track diameter. A californium (Cf-252) radioactive source with an activity of 160 Bq was used to irradiate groups 1, 2, and 3 of CR-39 detectors, each of five samples, at alpha energies of 2.7, 3.86, and 5.11 MeV. Different alpha energies were achieved by changing the source–detector distance. Two aluminum range filters of thicknesses 17 and 11 \( \upmu {\text{m}} \) were used in conjunction with CR-39 detectors to separate alpha particles according to their energy. The thickness of the filter was determined by the SRIM 2013 version. The tracks in group 1 (bare CR-39) are for alpha particles with energies of 2.7, 3.86, and 5.11 MeV, while the tracks in group 2 (CR39 + 11 \( \upmu {\text{m}} \) filter) are for alpha particles with energies of 3.86 and 5.11 MeV. Alpha particles with an energy of 2.7 MeV are blocked by the 11-\( \upmu {\text{m}} \) Al filter. The filter in group 3 (17 \( \upmu {\text{m}} \)) blocked alpha particles with energies of 2.7 and 3.86 MeV and allowed the alpha particles of 5.11 MeV to pass and produce tracks. Therefore, the average number of tracks in group 3 is for 5.11 MeV alpha particles. The tracks for alpha particles of energy 3.86 MeV can be found by subtracting the tracks in group 3 from those in group 2. The difference between the average number of tracks in groups 1 and 2 is for alpha particles with an energy of 2.7 MeV. The present method could determine the tracks from each different alpha energy without using the calibration curve of energy versus track diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kacenjar, S.; Goldman, L.; Entenberg, A.: Copper activation counter calibration using solid state track detectors. Rev. Sci. Instrum. 52(6), 831–834 (1981). https://doi.org/10.1063/1.1136704

    Article  Google Scholar 

  2. Kacenjar, S.; Skupsky, S.; Entenberg, A.; Goldman, L.; Richardson, M.: Direct measurement of the fuel density-radius product in laser-fusion experiments. Phys. Rev. Lett. 49(7), 463–467 (1982). https://doi.org/10.1103/physrevlett.49.463

    Article  Google Scholar 

  3. Leeper, R.J.; Lee, J.R.; Kissel, L.; Johnson, D.J.; Stygar, W.A.; Hebron, D.E.: Direct measurement of the energy spectrum of an intense proton beam. J. Appl. Phys. 60(12), 4059–4063 (1986). https://doi.org/10.1063/1.337536

    Article  Google Scholar 

  4. Frenje, J.A.; Li, C.K.; Séguin, F.H.; Hicks, D.G.; Kurebayashi, S.; Petrasso, R.D.; Roberts, S.; Glebov, V.Y.; Meyerhofer, D.D.; Sangster, T.C.; Soures, J.M.; Stoeckl, C.; Chiritescu, C.; Schmid, G.J.; Lerche, R.A.: Absolute measurements of neutron yields from DD and DT implosions at the omega laser facility using CR-39 track detectors. Rev. Sci. Instrum. 73(7), 2597–2605 (2002). https://doi.org/10.1063/1.1487889

    Article  Google Scholar 

  5. Séguin, F.H.; Frenje, J.A.; Li, C.K.; Hicks, D.G.; Kurebayashi, S.; Rygg, J.R.; Schwartz, B.-E.; Petrasso, R.D.; Roberts, S.; Soures, J.M.; Meyerhofer, D.D.; Sangster, T.C.; Knauer, J.P.; Sorce, C.; Glebov, V.Y.; Stoeckl, C.; Phillips, T.W.; Leeper, R.J.; Fletcher, K.; Padalino, S.: Spectrometry of charged particles from inertial-confinement-fusion plasmas. Rev. Sci. Instrum. 74(2), 975–995 (2003). https://doi.org/10.1063/1.1518141

    Article  Google Scholar 

  6. Séguin, F.H.; DeCiantis, J.L.; Frenje, J.A.; Kurebayashi, S.; Li, C.K.; Rygg, J.R.; Chen, C.; Berube, V.; Schwartz, B.E.; Petrasso, R.D.; Smalyuk, V.A.; Marshall, F.J.; Knauer, J.P.; Delettrez, J.A.; McKenty, P.W.; Meyerhofer, D.D.; Roberts, S.; Sangster, T.C.; Mikaelian, K.; Park, H.S.: D3-He-proton emission imaging for inertial-confinement-fusion experiments (invited). Rev. Sci. Instrum. 75(10), 3520–3525 (2004). https://doi.org/10.1063/1.1788892

    Article  Google Scholar 

  7. DeCiantis, J.L.; Séguin, F.H.; Frenje, J.A.; Berube, V.; Canavan, M.J.; Chen, C.D.; Kurebayashi, S.; Li, C.K.; Rygg, J.R.; Schwartz, B.E.; Petrasso, R.D.: Proton core imaging of the nuclear burn in inertial confinement fusion implosions. Rev. Sci. Instrum. 77(4), 043503 (2006). https://doi.org/10.1063/1.2173788

    Article  Google Scholar 

  8. Frenje, J.A.; Casey, D.T.; Li, C.K.; Rygg, J.R.; Séguin, F.H.; Petrasso, R.D.; Yu Glebov, V.; Meyerhofer, D.D.; Sangster, T.C.; Hatchett, S.; Haan, S.; Cerjan, C.; Landen, O.; Moran, M.; Song, P.; Wilson, D.C.; Leeper, R.J.: First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at Omega (invited). Rev. Sci. Instrum. (2008). https://doi.org/10.1063/12956837

    Article  Google Scholar 

  9. Freeman, C.G.; Fiksel, G.; Stoeckl, C.; Sinenian, N.; Canfield, M.J.; Graeper, G.B.; Lombardo, A.T.; Stillman, C.R.; Padalino, S.J.; Mileham, C.; Sangster, T.C.; Frenje, J.A.: Calibration of a Thomson Parabola ion spectrometer and FUJIFILM imaging plate detectors for protons, deuterons, and alpha particles. Rev. Sci. Instrum. 82(7), 073301 (2011). https://doi.org/10.1063/1.3606446

    Article  Google Scholar 

  10. Zylstra, A.B.; Li, C.K.; Rinderknecht, H.G.; Séguin, F.H.; Petrasso, R.D.; Stoeckl, C.; Meyerhofer, D.D.; Nilson, P.; Sangster, T.C.; Le Pape, S.; Mackinnon, A.; Patel, P.: Using high-intensity laser-generated energetic protons to radiograph directly driven implosions. Rev. Sci. Instrum. 83(1), 013511 (2012). https://doi.org/10.1063/1.3680110

    Article  Google Scholar 

  11. Zylstra, A.B.; Frenje, J.A.; Séguin, F.H.; Rosenberg, M.J.; Rinderknecht, H.G.; Johnson, M.G.; Casey, D.T.; Sinenian, N.; Manuel, M.E.; Waugh, C.J.; Sio, H.W.: Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions. Rev. Sci. Instrum. (2012). https://doi.org/10.1063/1.4729672

    Article  Google Scholar 

  12. Seguin, F.H.; Sinenian, N.; Rosenberg, M.; Zylstra, A.; Manuel, M.J.-E.; Sio, H.; Waugh, C.; Rinderknecht, H.G.; Johnson, M.G.; Frenje, J.; Li, C.K.; Petrasso, R.; Sangster, T.C.; Roberts, S.: Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science. Rev. Sci. Instrum. (2012). https://doi.org/10.1063/1.4732065

    Article  Google Scholar 

  13. Casey, D.T.; Frenje, J.A.; Gatu Johnson, M.; Séguin, F.H.; Li, C.K.; Petrasso, R.D.; Glebov, VYu.; Katz, J.; Knauer, J.P.; Meyerhofer, D.D.; Sangster, T.C.; Bionta, R.M.; Bleuel, D.L.; Döppner, T.; Glenzer, S.; Hartouni, E.; Hatchett, S.P.; Le Pape, S.; Ma, T.; MacKinnon, A.; Mckernan, M.A.; Moran, M.; Moses, E.; Park, H.-S.; Ralph, J.; Remington, B.A.; Smalyuk, V.; Yeamans, C.B.; Kline, J.; Kyrala, G.; Chandler, G.A.; Leeper, R.J.; Ruiz, C.L.; Cooper, G.W.; Nelson, A.J.; Fletcher, K.; Kilkenny, J.; Farrell, M.; Jasion, D.; Pagui, R.: Measuring the absolute deuterium–tritium neutron yield using the magnetic recoil spectrometer at Omega and the NIF Rev. Sci. Instrum. (2012). https://doi.org/10.1063/1.4738657

    Article  Google Scholar 

  14. Casey, D.T.; Frenje, J.A.; Gatu Johnson, M.; Séguin, F.H.; Li, C.K.; Petrasso, R.D.; Glebov, V.Y.; Katz, J.; Magoon, J.; Meyerhofer, D.D.; Sangster, T.C.: The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at Omega and the NIF. Rev. Sci. Instrum. 84(4), 043506 (2013). https://doi.org/10.1063/1.4796042

    Article  Google Scholar 

  15. Zylstra, A.B.; Gatu Johnson, M.; Frenje, J.A.; Séguin, F.H.; Rinderknecht, H.G.; Rosenberg, M.J.; Sio, H.W.; Li, C.K.; Petrasso, R.D.; McCluskey, M.; Mastrosimone, D.; Glebov, V.Y.; Forrest, C.; Stoeckl, C.; Sangster, T.C.: A compact neutron spectrometer for characterizing Inertial confinement fusion implosions at Omega and the NIF. Rev. Sci. Instrum. 85(6), 063502 (2014). https://doi.org/10.1063/1.4880203

    Article  Google Scholar 

  16. Gatu Johnson, M.; Frenje, J.A.; Li, C.K.; Séguin, F.H.; Petrasso, R.D.; Bionta, R.M.; Casey, D.T.; Caggiano, J.A.; Hatarik, R.; Khater, H.Y.; Sayre, D.B.; Knauer, J.P.; Sangster, T.C.; Herrmann, H.W.; Kilkenny, J.D.: Measurements of fuel and ablator ρR in symmetry-capsule implosions with the magnetic recoil neutron spectrometer (MRS) on the National Ignition Facility. Rev. Sci. Instrum. (2014). https://doi.org/10.1063/1.4886418

    Article  Google Scholar 

  17. Rosenberg, M.J.; Zylstra, A.B.; Frenje, J.A.; Rinderknecht, H.G.; Gatu Johnson, M.; Waugh, C.J.; Séguin, F.H.; Sio, H.; Sinenian, N.; Li, C.K.; Petrasso, R.D.; Glebov, V.Y.; Hohenberger, M.; Stoeckl, C.; Sangster, T.C.; Yeamans, C.B.; LePape, S.; Mackinnon, A.J.; Bionta, R.M., et al.: A Compact Proton Spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions. Rev. Sci. Instrum. 85(10), 103504 (2014). https://doi.org/10.1063/1.4897193

    Article  Google Scholar 

  18. Waugh, C.J.; Rosenberg, M.J.; Zylstra, A.B.; Frenje, J.A.; Séguin, F.H.; Petrasso, R.D.; Glebov, V.Y.; Sangster, T.C.; Stoeckl, C.: A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on Omega using CR-39-based proton detectors. Rev. Sci. Instrum. 86(5), 053506 (2015). https://doi.org/10.1063/1.4919290

    Article  Google Scholar 

  19. Zylstra, A.B.; Park, H.-S.; Ross, J.S.; Fiuza, F.; Frenje, J.A.; Higginson, D.P.; Huntington, C.; Li, C.K.; Petrasso, R.D.; Pollock, B.; Remington, B.; Rinderknecht, H.G.; Ryutov, D.; Séguin, F.H.; Turnbull, D.; Wilks, S.C.: Proton pinhole imaging on the National Ignition Facility. Rev. Sci. Instrum. (2016). https://doi.org/10.1063/1.4959782

    Article  Google Scholar 

  20. Gatu Johnson, M.; Frenje, J.A.; Bionta, R.M.; Casey, D.T.; Eckart, M.J.; Farrell, M.P.; Grim, G.P.; Hartouni, E.P.; Hatarik, R.; Hoppe, M.; Kilkenny, J.D.; Li, C.K.; Petrasso, R.D.; Reynolds, H.G.; Sayre, D.B.; Schoff, M.E.; Séguin, F.H.; Skulina, K.; Yeamans, C.B.: High-resolution measurements of the DT neutron spectrum using new CD foils in the magnetic recoil neutron spectrometer (MRS) on the National Ignition Facility. Rev. Sci. Instrum. (2016). https://doi.org/10.1063/1.4959946

    Article  Google Scholar 

  21. Gatu Johnson, M.; Katz, J.; Forrest, C.; Frenje, J.A.; Glebov, V.Y.; Li, C.K.; Paguio, R.; Parker, C.E.; Robillard, C.; Sangster, T.C.; Schoff, M.; Séguin, F.H.; Stoeckl, C.; Petrasso, R.D.: Measurement of apparent ion temperature using the magnetic recoil spectrometer at the omega laser facility. Rev. Sci. Instrum. (2018). https://doi.org/10.1063/1.5035287

    Article  Google Scholar 

  22. Ampleford, D.J.; Ruiz, C.L.; Fittinghoff, D.N.; Vaughan, J.D.; Hahn, K.; Lahmann, B.; Gatu-Johnson, M.; Frenje, J.; Petrasso, R.; Ball, C.R.; Maurer, A.J.; Knapp, P.F.; Harvey-Thompson, A.J.; Fisher, J.; Alberto, P.; Torres, J.A.; Cooper, G.; Jones, B.; Rochau, G.A.; May, M.J.: One dimensional imager of neutrons on the Z machine. Rev. Sci. Instrum. (2018). https://doi.org/10.1063/1.5038118

    Article  Google Scholar 

  23. Dwaikat, N.; Al-Karmi, A.M.: Application of CR-39 microfilm for rapid discrimination between alpha-particle sources. Nucl. Eng. Technol. 49(4), 881–885 (2017). https://doi.org/10.1016/j.net.2016.12.001

    Article  Google Scholar 

  24. Bondarenko, O.A.; Salmon, P.L.; Henshaw, D.L.; Fews, A.P.: Performance of alpha particle spectroscopy using a tastrak™ detector. Radiat. Meas. 26(1), 59–64 (1996). https://doi.org/10.1016/1350-4487(95)00217-0

    Article  Google Scholar 

  25. Bondarenko, O.A.; Salmon, P.L.; Henshaw, D.L.; Fews, A.P.; Ross, A.N.: Alpha-particle spectroscopy with TASTRAK (CR-39 type) plastic, and its application to the measurement of hot particles. Nucl. Instrum. Methods Phys. Res., Sect. A 369(2–3), 582–587 (1996). https://doi.org/10.1016/s0168-9002(96)80056-8

    Article  Google Scholar 

  26. Awad, E.M.; Soliman, A.A.; Rammah, Y.S.: Alpha particle spectroscopy for cr-39 detector utilizing matrix of energy equations. Phys. Lett. A 369(5–6), 359–366 (2007). https://doi.org/10.1016/j.physleta.2007.05.011

    Article  Google Scholar 

  27. Awad, E.M.; Soliman, A.A.; El-Samman, H.M.; Arafa, W.M.; Rammah, Y.S.: Alpha spectroscopy in CR-39 ssntds using energy simulation and matrix of energy equations for open field studies. Phys. Lett. A 372(17), 2959–2966 (2008). https://doi.org/10.1016/j.physleta.2008.01.022

    Article  Google Scholar 

  28. Immè, G.; Morelli, D.; Aranzulla, M.; Catalano, R.; Mangano, G.: Nuclear track detector characterization for alpha-particle spectroscopy. Radiat. Meas. 50, 253–257 (2013). https://doi.org/10.1016/j.radmeas.2012.03.014

    Article  Google Scholar 

  29. Sinenian, N.; Rosenberg, M.J.; Manuel, M.; McDuffee, S.C.; Casey, D.T.; Zylstra, A.B.; Rinderknecht, H.G.; Gatu Johnson, M.; Séguin, F.H.; Frenje, J.A.; Li, C.K.; Petrasso, R.D.: The response of CR-39 nuclear track detector to 1–9 MeV protons. Rev. Sci. Instrum. 82(10), 103303 (2011). https://doi.org/10.1063/1.3653549

    Article  Google Scholar 

  30. Le Thanh, P.; Chambaudet, A.; Vuilleumier, C.: A method of determining the average energy of Radon and daughter Alpha Patticles using two passive detectors: CR-39 nuclear track detector and LIF thermoluminescent detector. Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Measur. 15(1–4), 543–546 (1988). https://doi.org/10.1016/1359-0189(88)90198-7

    Article  Google Scholar 

  31. Dwaikat, N.; Safarini, G.; El-hasan, M.; Iida, T.: CR-39 detector compared with Kodalpha film type (LR115) in terms of radon concentration. Nucl. Instrum. Methods Phys. Res. Sect. A 574(2), 289–291 (2007). https://doi.org/10.1016/j.nima.2007.01.168

    Article  Google Scholar 

  32. Chavan, S.S.; Bagla, H.K.: Measurements of alpha radioactivity in thermal power plant effluents employing CR-39 detector based improved Alpha Track Detection Method. J. Environ. Radioact. 233, 106574 (2021). https://doi.org/10.1016/j.jenvrad.2021.106574

    Article  Google Scholar 

  33. Hashim, A.K.; Hatif, A.R.; Ahmed, N.M.; Wadi, I.A.; Al Qaaod, A.A.: Comparison study of CR-39 and CN-85 detectors to evaluate the alpha radioactivity of some samples of drinks in Iraq. Appl. Radiat. Isotop. 167, 109410 (2021). https://doi.org/10.1016/j.apradiso.2020.109410

    Article  Google Scholar 

  34. Wang, C.; Guo, S.-L.; Chang, Z.-Y.; Liu, G.-R.; Zhao, Y.-G.: Detection and identification of PU particles and HEU particles by nuclear detectors CR-39. Radiat. Meas. 119, 174–178 (2018). https://doi.org/10.1016/j.radmeas.2018.10.012

    Article  Google Scholar 

  35. Lahmann, B.; Gatu Johnson, M.; Hahn, K.D.; Frenje, J.A.; Ampleford, D.J.; Jones, B.; Mangan, M.A.; Maurer, A.; Ruiz, C.L.; Séguin, F.H.; Petrasso, R.D.: A neutron recoil-spectrometer for measuring yield and determining liner areal densities at the Z facility. Rev. Sci. Instrum. 91(7), 073501 (2020). https://doi.org/10.1063/5.0011499

    Article  Google Scholar 

  36. Séguin, F.H.; Li, C.K.; Frenje, J.A.; Hicks, D.G.; Green, K.M.; Kurebayashi, S.; Petrasso, R.D.; Soures, J.M.; Meyerhofer, D.D.; Glebov, V.Y.; Radha, P.B.; Stoeckl, C.; Roberts, S.; Sorce, C.; Sangster, T.C.; Cable, M.D.; Fletcher, K.; Padalino, S.: Using secondary-proton spectra to study the compression and symmetry of deuterium-filled capsules at omega. Phys. Plasmas 9(6), 2725–2737 (2002). https://doi.org/10.1063/1.1472502

    Article  Google Scholar 

  37. Thomas, H.S.; Deas, R.M.; Kirkham, L.N.; Dodd, P.M.; Zemaityte, E.; Hillier, A.D.; Neely, D.: Response of nuclear track detector CR-39 to low energy muons. Plasma Phys. Controll. Fus. 63(12), 124001 (2021). https://doi.org/10.1088/1361-6587/ac2558

    Article  Google Scholar 

  38. Dwaikat, N.; El-hasan, M.; Sueyasu, M.; Kada, W.; Sato, F.; Kato, Y.; Saffarini, G.; Iida, T.: A fast method for the determination of the efficiency coefficient of bare CR-39 Detector. Nucl. Instrum. Methods Phys. Res. Sect. B 268(20), 3351–3355 (2010). https://doi.org/10.1016/j.nimb.2010.06.038

    Article  Google Scholar 

  39. Izerrouken, M.; Skvarč, J.; Ilić, R.: A wide energy range personnel neutron dosimeter. Radiat. Meas. 37(1), 21–24 (2003). https://doi.org/10.1016/s1350-4487(02)00131-2

    Article  Google Scholar 

  40. Rinderknecht, H.G.; Rojas-Herrera, J.; Zylstra, A.B.; Frenje, J.A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M.J.; Li, C.K.; Séguin, F.H.; Petrasso, R.D.; Filkins, T.; Steidle, J.A.; Steidle, J.A.; Traynor, N.; Freeman, C.: Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics. Rev. Sci. Instrum. 86(12), 123511 (2015). https://doi.org/10.1063/1.4938161

    Article  Google Scholar 

  41. Rojas-Herrera, J.; Rinderknecht, H.G.; Zylstra, A.B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M.J.; Sio, H.; Seguin, F.H.; Frenje, J.A.; Li, C.K.; Petrasso, R.D.: Impact of x-ray dose on the response of Cr-39 to 1–5.5 MeV alphas. Rev. Sci. Instrum. 86(3), 033501 (2015). https://doi.org/10.1063/1.4913906

    Article  Google Scholar 

  42. Stapf, R.O.; Azechi, H.; Miyanaga, N.; Nakaishi, H.; Yamanaka, M.; Izawa, Y.; Yamanaka, T.; Yamanaka, C.: Calibration of neutron detector response to 2.45 MeV neutrons based on 3.02 MeV proton tracks in CR39. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectrom. Detect. Assoc. Equip. 254(1), 135–138 (1987). https://doi.org/10.1016/0168-9002(87)90494-3

    Article  Google Scholar 

  43. Oda, K.; Ito, M.; Miyake, H.; Michijima, M.; Yamamoto, J.: Track formation in CR-39 detector exposed to D-T neutrons. Nucl. Instrum. Methods Phys. Res., Sect. B 35(1), 50–56 (1988). https://doi.org/10.1016/0168-583x(88)90097-3

    Article  Google Scholar 

  44. Rosenberg, M.J.; Séguin, F.H.; Waugh, C.J.; Rinderknecht, H.G.; Orozco, D.; Frenje, J.A.; Johnson, M.G.; Sio, H.; Zylstra, A.B.; Sinenian, N.; Li, C.K.; Petrasso, R.D.; Glebov, V.Y.; Stoeckl, C.; Hohenberger, M.; Sangster, T.C.; LePape, S.; Mackinnon, A.J.; Bionta, R.M., et al.: Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications. Rev. Sci. Instrum. 85(4), 043302 (2014). https://doi.org/10.1063/1.4870898

    Article  Google Scholar 

  45. Ziegler, J.F. [Internet]. SRIM-the stopping and range of ions in matter, (2013). Available from: http://www.srim.org/ Accessed 2023 Aug 15

Download references

Acknowledgements

The author wishes to acknowledge the support provided for this work by King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia, through project IN131023. The author also thanks the Department of Physics at King Fahd University of Petroleum and Minerals (KFUPM) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidal Dwaikat.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwaikat, N. Charge Particle Spectroscopy: A Solid-State Nuclear Track Detector (SSNTD)-Based Spectrometer. Arab J Sci Eng 49, 1237–1243 (2024). https://doi.org/10.1007/s13369-023-08284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08284-9

Keywords

Navigation