Skip to main content
Log in

Self-Adaptive PI-FLC for BLDC Motor Speed Supplied by PEM Fuel Cell Stack Optimized by MPPT

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the most promising technology available, a fuel cell stack called a “Polymer-Electrolyte Membrane (PEMFC),” is used to power a brushless DC motor. To enhance the PEMFC’s functionality, a robust “maximum power point tracking” (MPPT) algorithm was used in the DC/DC boost circuit. The “perturbation and observation” (P&O) method was developed for this purpose. In this paper, we present a self-tuning PI-fuzzy logic controller (FLC) for the speed of brushless DC (BLDC) motors. The effectiveness of the proposed controller was evaluated using simulated load disturbances and reference speed fluctuations. Hence, the rise time (R.T), settling time (S.T), steady-state error (S.S.E), overshoot (OVER), undershoot (UNDER), peak time (P.T), and peak value (P.V) are computed and examined as part of the required control performance characteristics. PEMFC source optimization with load variation and BLDC speed regulation is the key contribution of this study. The findings of this study have the potential to lead to the development of more efficient, sustainable energy systems that would be good for the planet and cheaper to operate. The results further demonstrate that the controller performs admirably across a wide range of speeds and loads since the PEMFC battery reliably supplies the power required for the BLDC motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Hai, T.; Wang, D.; Muranaka, T.: An improved mppt control-based anfis method to maximize power tracking of pem fuel cell system. Sustain. Energy Technol. Assess. 54, 102629 (2022). https://doi.org/10.1016/j.seta.2022.102629

    Article  Google Scholar 

  2. Hao, X.; Salhi, I.; Laghrouche, S.; Ait-Amirat, Y.; Djerdir, A.: Backstepping super twisting control of four-phase interleaved boost converter for pem fuel cell. IEEE Trans. Power Electron. 37(7), 7858–7870 (2022)

    Article  Google Scholar 

  3. Souissi, A.: Adaptive sliding mode control of a pem fuel cell system based on the super twisting algorithm. Energy Rep. 7, 3390–3399 (2021)

    Article  Google Scholar 

  4. Vasantharaj, S.; Indragandhi, V.; Subramaniyaswamy, V.; Teekaraman, Y.; Kuppusamy, R.; Nikolovski, S.: Efficient control of dc microgrid with hybrid P.V-fuel cell and energy storage systems. Energies 14(11), 3234 (2021)

    Article  Google Scholar 

  5. Harrag, A.; Rezk, H.: Indirect p &o type-2 fuzzy-based adaptive step mppt for proton exchange membrane fuel cell. Neural Comput. Appl. 33, 9649–9662 (2021). https://doi.org/10.1007/s00521-021-05729-w

    Article  Google Scholar 

  6. Derbeli, M.; Barambones, O.; Silaa, M.Y.; Napole, C.: Real-time implementation of a new mppt control method for a dc-dc boost converter used in a pem fuel cell power system. In: Actuators, vol. 9, p. 105 (2020). MDPI. figshare https://doi.org/10.3390/act9040105

  7. Song, B.; Xiao, Y.; Xu, L.: Design of fuzzy pi controller for brushless dc motor based on pso-gsa algorithm. Syst. Sci. Control Eng. 8(1), 67–77 (2020). https://doi.org/10.1080/21642583.2020.1723144

    Article  Google Scholar 

  8. Derbeli, M.; Barambones, O.; Farhat, M.; Ramos-Hernanz, J.A.; Sbita, L.: Robust high order sliding mode control for performance improvement of pem fuel cell power systems. Int. J. Hydrogen Energy 45(53), 29222–29234 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.172

    Article  Google Scholar 

  9. Khaniki, M.A.L.; Esfandiari, S.; Manthouri, M.: Speed control of brushless dc motor using fractional order fuzzy pi controller optimized via woa. In: 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 431–436 (2020). IEEE. figshare https://doi.org/10.1109/ICCKE50421.2020.9303634

  10. Yigit, T.; Celik, H.: Speed controlling of the pem fuel cell powered bldc motor with fopi optimized by msa. Int. J. Hydrogen Energy 45(60), 35097–35107 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.091

    Article  Google Scholar 

  11. Shrivastava, R.G.; Bodke, M.P.; Khule, S.: Anfis-mppt control algorithm for a pemfc system used in electric vehicle applications. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–6 (2021). IEEE. figshare https://doi.org/10.1109/GCAT52182.2021.9587684

  12. Dudek, M.; Lis, B.; Raźniak, A.; Krauz, M.; Kawalec, M.: Selected aspects of designing modular pemfc stacks as power sources for unmanned aerial vehicles. Appl. Sci. 11(2), 675 (2021). https://doi.org/10.3390/app11020675

    Article  Google Scholar 

  13. Xing, L.; Xiang, W.; Zhu, R.; Tu, Z.: Modeling and thermal management of proton exchange membrane fuel cell for fuel cell/battery hybrid automotive vehicle. Int. J. Hydrogen Energy 47(3), 1888–1900 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.146

    Article  Google Scholar 

  14. Abdalla, S.A.; Abdullah, S.S.; Kassem, A.M.: Performance enhancement and power management strategy of an autonomous hybrid fuel cell/wind power system based on adaptive neuro fuzzy inference system. Ain Shams Eng. J. 13(4), 101655 (2022). https://doi.org/10.1016/j.asej.2021.101655

    Article  Google Scholar 

  15. Mary, D.M.; Kumar, C.; Xavier, F.J.; Rashad, S.A.; Fayek, H.H.; Ravichandran, N.; Barua, S.: Fuzzy pi control of trapezoidal back emf brushless dc motor drive based on the position control optimization technique. Math. Problems (2022). https://doi.org/10.1155/2022/4605449

    Article  Google Scholar 

  16. Jouili, Y.; Youssef, M.A.B.; Hamed, B.; Sbita, L.: Brushless dc motor fed by pem fuel cell stack for mini uav’s. In: 2021 12th International Renewable Energy Congress (IREC), pp. 1–6 (2021). IEEE. figshare https://doi.org/10.1109/IREC52758.2021.9624822

  17. Reddy, H.; Sharma, S. et al.: Implementation of adaptive neuro fuzzy controller for fuel cell based electric vehicles. Gazi Univ. J. Sci. 34(1), 112–126 (2021). https://doi.org/10.35378/gujs.698272

  18. Kumar, K.; Tiwari, R.; Varaprasad, P.V.; Babu, C.; Reddy, K.J.: Performance evaluation of fuel cell fed electric vehicle system with reconfigured quadratic boost converter. Int. J. Hydrogen Energy 46(11), 8167–8178 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.272

    Article  Google Scholar 

  19. Lu, P.; Huang, W.; Xiao, J.: Speed tracking of brushless dc motor based on deep reinforcement learning and pid. In: 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO), pp. 130–134 (2021). IEEE. figshare https://doi.org/10.1109/CMMNO53328.2021.9467649

  20. Xie, W.; Wang, J.-S.; Wang, H.-B.: Pi controller of speed regulation of brushless dc motor based on particle swarm optimization algorithm with improved inertia weights. Mathematical Problems in Engineering 2019 (2019). figshare https://doi.org/10.1155/2019/2671792

  21. Song, B.; Xiao, Y.; Xu, L.: Design of fuzzy pi controller for brushless dc motor based on pso-gsa algorithm. Syst. Sci. Control Eng. 8(1), 67–77 (2020). https://doi.org/10.1080/21642583.2020.1723144

    Article  Google Scholar 

  22. Mahmood, R.S.; Shabbir, G.; Khan, H.U.; Mahmood, R.B.; Ahmad, S.; Riaz, Z.: Speed control of brushless dc motor with oustaloup fractional-order proportional integral derivative fopid. In: 2021 16th International Conference on Emerging Technologies (ICET), pp. 1–5 (2021). IEEE. figshare https://doi.org/10.1109/ICET54505.2021.9689833

  23. Jouili, Y.; Garraoui, R.; Hamed, M.B.; Sbita, L.: Anti-windup self-adaptive pi-fuzzy speed controller for brushless dc motor. In: 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), vol. 4, pp. 1–6 (2022). IEEE. figshare https://doi.org/10.1109/CISTEM55808.2022.10044008

  24. Ganesan, R.; Suresh, S.; Sivaraju, S.: Anfis based multi-sector space vector pwm scheme for sensorless bldc motor drive. Microprocess Microsyst 76, 103091 (2020). https://doi.org/10.1016/j.micpro.2020.103091

    Article  Google Scholar 

  25. Balamurugan, K.; Mahalakshmi, R.: Anfis-fractional order pid with inspired oppositional optimization based speed controller for brushless dc motor. Int. J. Wavelets, Multiresolution and Inform. Process. 18(01), 1941004 (2020). https://doi.org/10.1142/S0219691319410042

    Article  Google Scholar 

  26. Gadekar, K.; Joshi, S.; Mehta, H.: Performance improvement in bldc motor drive using self-tuning pid controller. In: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 1162–1166 (2020). IEEE. figshare https://doi.org/10.1016/j.ijhydene.2020.04.091

  27. Suryoatmojo, H.; Pratomo, D.R.; Soedibyo, M.R.; Riawan, D.C.; Setijadi, E.; Mardiyanto, R.: Robust speed control of brushless dc motor based on adaptive neuro fuzzy inference system for electric motorcycle application. Int. J. Innovative Comput. Inform. Control 16(2), 415–428 (2020)

    Google Scholar 

  28. Devi Vidhya, S.; Balaji, M.: Hybrid fuzzy pi controlled multi-input dc/dc converter for electric vehicle application. Automatika 61(1), 79–91 (2020). https://doi.org/10.1080/00051144.2019.1684038

    Article  Google Scholar 

  29. Yamina, J.M.; Garraoui, R.; Mouna, B.H.: Pem fuel cell with conventional mppt. In: 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 249–255 (2020). IEEE. figshare https://doi.org/10.1109/SSD49366.2020.9364218

  30. Badoud, A.E.; Mekhilef, S.; Ould Bouamama, B.: A novel hybrid mppt controller based on bond graph and fuzzy logic in proton exchange membrane fuel cell system: Experimental validation. Arabian Journal for Science and Engineering, 1–20 (2021). figshare https://doi.org/10.1007/s00521-021-05729-w

  31. Mohammed Eltoum, M.A.; Hussein, A.; Abido, M.A.: Hybrid fuzzy fractional-order pid-based speed control for brushless dc motor. Arab. J. Sci. Eng. 46(10), 9423–9435 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamina Jouili.

Appendix A

Appendix A

Table 6 PEM Membrane Fuel Cell Parameters
Table 7 Parameters of BLDC Motor Drive
Table 8 Decoder
Table 9 States of Operation at Different Partial Pressures of Gas

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouili, Y., Garraoui, R., Ben Hamed, M. et al. Self-Adaptive PI-FLC for BLDC Motor Speed Supplied by PEM Fuel Cell Stack Optimized by MPPT. Arab J Sci Eng 49, 6487–6503 (2024). https://doi.org/10.1007/s13369-023-08265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08265-y

Keywords

Navigation