Skip to main content
Log in

Graphene-Based Log-Periodic Dipole Antenna-Shaped MIMO Antenna Structure for the Terahertz Frequency Spectrum

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Log-periodic dipole antenna-shaped multiple-input multi-output (MIMO) with multiband operation features employing graphene resonator material operating in the 1–30 THz frequency range was proposed for numerical analysis. The main aim of the proposed MIMO antenna structure is to achieve a future CMOS and communication device-compatible structure. This research also aims to achieve a wide band of operation with miniaturization of size operating at the THz frequency spectrum. There were four types of an antenna structure with single- and multi-element log-periodic MIMO antenna structure that is numerically investigated. Several antenna parameters such as reflectance loss, gain, radiation patterns and other MIMO antenna parameters are investigated to check the compatibility for short-distance communication. Compatibility and the limitations of speaking over a short distance are also considered while determining these criteria. The THz MIMO antenna provides strong isolation values and an operating band. This construction has a maximum gain of 14 dBi and an overall bandwidth of 13 THz. Furthermore, the values of the different MIMO antenna parameters MEG (− 0.5 dB to 0.5 dB), ECC (0–0.04), DG (~ 10 dB), TARC (< − 10 dB) and CCL (0–3 bits/s/Hz) which makes overall compatible antenna for the better multichannel operation are observed. Specifically, the suggested antennas are intended to be used in three frequency ranges ranging from 1 to 30 THz. The objective of this study is to devise an innovative construction for a terahertz antenna capable of delivering a gain that is high and a bandwidth that is extraordinarily wide, while retaining the customary compact antenna size required for terahertz applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ying, Z.: Antennas in cellular phones for mobile communications. Proc. IEEE. 100, 2286–2296 (2012). https://doi.org/10.1109/JPROC.2012.2186214

    Article  Google Scholar 

  2. Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access. 1, 335–349 (2013). https://doi.org/10.1109/ACCESS.2013.2260813

    Article  Google Scholar 

  3. He, Y.; Chen, Y.; Zhang, L.; Wong, S.-W.; Chen, Z.N.: An overview of terahertz antennas. China Commun. 17(7), 124–165 (2020). https://doi.org/10.23919/J.CC.2020.07.011

    Article  Google Scholar 

  4. Singh, R.; Lehr, W.; Sicker, D.; Huq, K.M.S.: Beyond 5G: the role of THz spectrum. SSRN Electron. J. (2019). https://doi.org/10.2139/ssrn.3426810

    Article  Google Scholar 

  5. Jornet, J.M.; Akyildiz, I.F.: Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans. Wirel. Commun. 10, 3211–3221 (2011). https://doi.org/10.1109/TWC.2011.081011.100545

    Article  Google Scholar 

  6. Piesiewicz, R.; Jacob, M.; Koch, M.; Schoebel, J.; Kurner, T.: Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments. IEEE J. Sel. Top. Quantum Electron. 14, 421–430 (2008). https://doi.org/10.1109/JSTQE.2007.910984

    Article  Google Scholar 

  7. Jansen, C.; Priebe, S.; Moller, C.; Jacob, M.; Dierke, H.; Koch, M.; Kurner, T.: Diffuse scattering from rough surfaces in THz communication channels. IEEE Trans. Terahertz Sci. Technol. 1, 462–472 (2011). https://doi.org/10.1109/TTHZ.2011.2153610

    Article  Google Scholar 

  8. Piesiewicz, R.; Jansen, C.; Mittleman, D.; Kleine-Ostmann, T.; Koch, M.; Kürner, T.: Scattering analysis for the modeling of THz communication systems. IEEE Trans. Antennas Propag. 55, 3002–3009 (2007). https://doi.org/10.1109/TAP.2007.908559

    Article  Google Scholar 

  9. Greffet, J.J.: Scattering of electromagnetic waves by rough dielectric surfaces. Phys. Rev. B. 37, 6436–6441 (1988). https://doi.org/10.1103/PhysRevB.37.6436

    Article  Google Scholar 

  10. Kumar, D.; Pal, N.; Giri, P.; Varshney, G.: Altering the THz antenna response: by merging the resonance of tunable surface plasmons in fringing field. Plasmonics 18, 191–199 (2023). https://doi.org/10.1007/s11468-022-01756-y

    Article  Google Scholar 

  11. Khamaisi, B.; Jameson, S.; Socher, E.: A 210–227 GHz transmitter with integrated on-chip antenna in 90 nm CMOS technology. IEEE Trans. Terahertz Sci. Technol. 3, 141–150 (2013). https://doi.org/10.1109/TTHZ.2012.2236836

    Article  Google Scholar 

  12. Mak, K.M.; So, K.K.; Lai, H.W.; Luk, K.M.: A magnetoelectric dipole leaky-wave antenna for millimeter-wave application. IEEE Trans. Antennas Propag. 65, 6395–6402 (2017). https://doi.org/10.1109/TAP.2017.2722868

    Article  Google Scholar 

  13. Alharbi, A.G.; Sorathiya, V.: Ultra-wideband graphene-based micro-sized circular patch-shaped yagi-like MIMO antenna for terahertz wireless communication. Electron. 11, 1305 (2022). https://doi.org/10.3390/electronics11091305

    Article  Google Scholar 

  14. Patel, S.K.; Sorathiya, V.; Guo, T.; Argyropoulos, C.: Graphene-based directive optical leaky wave antenna. Microw. Opt. Technol. Lett. 61, 153–157 (2019). https://doi.org/10.1002/mop.31538

    Article  Google Scholar 

  15. Formanek, F.; Brun, M.-A.; Umetsu, T.; Omori, S.; Yasuda, A.: Aspheric silicon lenses for terahertz photoconductive antennas. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3072357

    Article  Google Scholar 

  16. Varshney, G.: Tunable terahertz dielectric resonator antenna. Silicon 13, 1907–1915 (2021). https://doi.org/10.1007/s12633-020-00577-0

    Article  Google Scholar 

  17. Devapriya, A.T.; Robinson, S.: Investigation on metamaterial antenna for terahertz applications. J. Microwaves Optoelectron. Electromagn. Appl. 18, 377–389 (2019). https://doi.org/10.1590/2179-10742019v18i31577

    Article  Google Scholar 

  18. Krishna, C.M.; Das, S.; Lakrit, S.; Lavadiya, S.; Madhav, B.T.P.; Sorathiya, V.: Design and analysis of a super wideband (0.09–30.14 THz) graphene based log periodic dipole array antenna for terahertz applications. Optik (Stuttg). 247, 167991 (2021). https://doi.org/10.1016/j.ijleo.2021.167991

    Article  Google Scholar 

  19. Zhou, M.M.; Cheng, Y.J.: D-band high-gain circular-polarized plate array antenna. IEEE Trans. Antennas Propag. 66, 1280–1287 (2018). https://doi.org/10.1109/TAP.2018.2796299

    Article  Google Scholar 

  20. Saurabh, L.; Bhatnagar, A.; Kumar, S.: Design and performance analysis of bow-tie photoconductive antenna for THz application. In: Proceedings of 2017 International Conference on Intelligent Computing and Control, I2C2 2017. pp. 1–3. IEEE (2018)

  21. Gonzalez, A.; Kaneko, K.; Kojima, T.; Asayama, S.; Uzawa, Y.: Terahertz corrugated horns (1.25–1.57 THz): design, Gaussian modeling, and measurements. IEEE Trans. Terahertz Sci. Technol. 7, 42–52 (2017). https://doi.org/10.1109/TTHZ.2016.2634860

    Article  Google Scholar 

  22. Dhillon, A.S.; Mittal, D.; Sidhu, E.: THz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications. Optik (Stuttg) 144, 634–641 (2017). https://doi.org/10.1016/j.ijleo.2017.07.018

    Article  Google Scholar 

  23. DenizhanSirmaci, Y.; Akin, C.K.; Sabah, C.: Fishnet based metamaterial loaded THz patch antenna. Opt. Quantum Electron. (2016). https://doi.org/10.1007/s11082-016-0449-6

    Article  Google Scholar 

  24. Paul, L.C.; Islam, M.M.: Proposal of wide bandwidth and very miniaturized having dimension of μm range slotted patch THz microstrip antenna using PBG substrate and DGS. In: 20th International Conference of Computer and Information Technology, ICCIT 2017. pp. 1–6. IEEE (2018)

  25. Vettikalladi, H.; Sethi, W.T.; Abas, A.F.B.; Ko, W.; Alkanhal, M.A.; Himdi, M.: Sub-THz antenna for high-speed wireless communication systems. Int. J. Antennas Propag. 2019, 1–9 (2019). https://doi.org/10.1155/2019/9573647

    Article  Google Scholar 

  26. Singh, A.K.; Mahto, S.K.; Kumar, P.; Sinha, R.: Analysis of path loss and channel capacity in quad element MIMO antenna for terahertz communication systems. Int. J. Circuit Theory Appl. 51, 1460–1475 (2023). https://doi.org/10.1002/cta.3473

    Article  Google Scholar 

  27. Muthukrishnan, K.; Kamruzzaman, M.M.; Lavadiya, S.; Sorathiya, V.: Superlative split ring resonator shaped ultrawideband and high gain 1 × 2 MIMO antenna for Terahertz communication. Nano Commun. Netw. 36, 100437 (2023). https://doi.org/10.1016/j.nancom.2023.100437

    Article  Google Scholar 

  28. Maurya, N.K.; Kumari, S.; Pareek, P.; Singh, L.: Graphene-based frequency agile isolation enhancement mechanism for MIMO antenna in terahertz regime. Nano Commun. Netw. 35, 100436 (2023). https://doi.org/10.1016/j.nancom.2023.100436

    Article  Google Scholar 

  29. Mohanty, A.; Sahu, S.: A micro 4-port THz MIMO antenna for nano communication networks. Photon. Nanostruct. Fundam. Appl. 53, 101092 (2023). https://doi.org/10.1016/j.photonics.2022.101092

    Article  Google Scholar 

  30. Ning, B.; Tian, Z.; Mei, W.; Chen, Z.; Han, C.; Li, S.; Yuan, J.; Zhang, R.: Beamforming technologies for ultra-massive MIMO in terahertz communications. IEEE Open J. Commun. Soc. 4, 614–658 (2023). https://doi.org/10.1109/OJCOMS.2023.3245669

    Article  Google Scholar 

  31. Sharma, M.K.; Sharma, A.: Compact size easily extendable self isolated multiport multiband antenna for future 5G high band and sub-THz band applications. Opt. Quantum Electron. 55, 146 (2023). https://doi.org/10.1007/s11082-022-04313-3

    Article  Google Scholar 

  32. Geim, A.: Graphene—the perfect atomic lattice. Uspekhi Fiz. Nauk. 181, 1283 (2011). https://doi.org/10.3367/ufnr.0181.201112d.1283

    Article  Google Scholar 

  33. Patel, S.K.; Sorathiya, V.; Nguyen, T.K.; Dhasarathan, V.: Numerical investigation of tunable metasurface of graphene split-ring resonator for terahertz frequency with reflection controlling property. Phys. E Low-Dimens. Syst. Nanostruct. 118, 113910 (2020). https://doi.org/10.1016/j.physe.2019.113910

    Article  Google Scholar 

  34. Nishtha; Yaduvanshi, R.S.: A Circular Graphene Patch MIMO Antenna at THz Range. Presented at the (2023)

  35. Babu, K.V.; Anuradha, B.; Das, S.: Design & analysis of a dual-band MIMO antenna to reduce the mutual coupling. J. Instrum. 14, P09023 (2019). https://doi.org/10.1088/1748-0221/14/09/P09023

    Article  Google Scholar 

  36. Sree, G.N.J.; Nelaturi, S.: Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications. AEU Int. J. Electron. Commun. 137, 153797 (2021). https://doi.org/10.1016/j.aeue.2021.153797

    Article  Google Scholar 

  37. Nasir, J.; Jamaluddin, M.H.; Khalily, M.; Kamarudin, M.R.; Ullah, I.; Selvaraju, R.: A reduced size dual port MIMO DRA with high isolation for 4G applications. Int. J. RF Microw. Comput. Eng. 25, 495–501 (2015). https://doi.org/10.1002/mmce.20884

    Article  Google Scholar 

  38. Sharawi, M.S.: Printed multiband MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas Propag. Mag. 55, 218–232 (2013). https://doi.org/10.1109/MAP.2013.6735522

    Article  Google Scholar 

  39. Kushwaha, R.K.; Karuppanan, P.; Malviya, L.D.: Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Phys. B Condens. Matter. 545, 107–112 (2018). https://doi.org/10.1016/j.physb.2018.05.045

    Article  Google Scholar 

  40. Singhal, S.: Hexagonal fractal antenna for super wideband terahertz applications. Optik (Stuttg). 206, 163615 (2020). https://doi.org/10.1016/j.ijleo.2019.163615

    Article  Google Scholar 

  41. Abohmra, A.; Ur Rehman Kazim, J.; Imran, M.A.; Abbas, H.; Alomainy, A.; Ur Rehman, M.; Abbasi, Q.H.: Ultra-wideband hybrid PICA Terahertz antenna for high-resolution biomedical imaging. In: 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings. pp. 1759–1760. IEEE (2020)

  42. Krishna, C.M.; Das, S.; Nella, A.; Lakrit, S.; Madhav, B.T.P.: A micro-sized rhombus-shaped THz antenna for high-speed short-range wireless communication applications. Plasmonics 16, 2167–2177 (2021). https://doi.org/10.1007/s11468-021-01472-z

    Article  Google Scholar 

  43. Mahmud, R.H.: Terahertz microstrip patch antennas for the surveillance applications. Kurdistan J. Appl. Res. 5, 16–27 (2020)

    Article  Google Scholar 

  44. Singhal, S.: Ultrawideband elliptical microstrip antenna for terahertz applications. Microw. Opt. Technol. Lett. 61, 2366–2373 (2019). https://doi.org/10.1002/mop.31910

    Article  Google Scholar 

  45. Shamim, S.M.; Uddin, M.S.; Rabiul Hasan, Md.; Samad, M.: Design and implementation of miniaturized wideband microstrip patch antenna for high-speed terahertz applications. J. Comput. Electron. 20(1), 604–610 (2021). https://doi.org/10.1007/s10825-020-01587-2

    Article  Google Scholar 

  46. Singhal, S.: CPW fed koch snowflake superwideband terahertz spatial diversity antenna. Optik (Stuttg) 206, 164329 (2020). https://doi.org/10.1016/j.ijleo.2020.164329

    Article  Google Scholar 

  47. Hocini, A.; Temmar, M.N.; Khedrouche, D.; Zamani, M.: Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals. Photonics Nanostructures Fundam. Appl. 36, 100723 (2019). https://doi.org/10.1016/j.photonics.2019.100723

    Article  Google Scholar 

  48. Nejati, A.; Sadeghzadeh, R.A.; Geran, F.: Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Phys. B Condens. Matter. 449, 113–120 (2014). https://doi.org/10.1016/j.physb.2014.05.014

    Article  Google Scholar 

  49. Younssi, M.; Jaoujal, A.; Diallo, Y.; El Moussaoui, A.; Aknin, N.: Study of a microstrip antenna with and without superstrate for terahertz frequency. Int. J. Innov. Appl. Stud. 2, 369–371 (2013)

    Google Scholar 

  50. Anand, S.; Kumar, D.S.; Wu, R.J.; Chavali, M.: Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik (Stuttg). 125, 5546–5549 (2014). https://doi.org/10.1016/j.ijleo.2014.06.085

    Article  Google Scholar 

  51. Ullah, S.; Ruan, C.; Sadiq, M.S.; Haq, T.U.; He, W.: Microstrip system on-chip circular polarized (CP) slotted antenna for THz communication application. J. Electromagn. Waves Appl. 34, 1029–1038 (2020). https://doi.org/10.1080/09205071.2020.1770130

    Article  Google Scholar 

  52. Nickpay, M.-R.; Danaie, M.; Shahzadi, A.: Wideband rectangular double-ring nanoribbon graphene-based antenna for terahertz communications. IETE J. Res. 68, 1625–1634 (2019). https://doi.org/10.1080/03772063.2019.1661801

    Article  Google Scholar 

  53. Shamim, S.M.; Das, S.; Hossain, M.A.; Madhav, B.T.P.: Investigations on graphene-based ultra-wideband (UWB) microstrip patch antennas for terahertz (THz) applications. Plasmonics 16, 1623–1631 (2021). https://doi.org/10.1007/s11468-021-01423-8

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement H2020-MSCA-RISE-2018-EXPLOR-872897. This work is also funded by the FCT/MEC through national funds and when applicable co-financed by the ERDF, under the PT2020 Partnership Agreement under the UID/EEA/50008/2020 project

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issa Elfergani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorathiya, V., Daher, M.G., Elfergani, I. et al. Graphene-Based Log-Periodic Dipole Antenna-Shaped MIMO Antenna Structure for the Terahertz Frequency Spectrum. Arab J Sci Eng 49, 6391–6404 (2024). https://doi.org/10.1007/s13369-023-08235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08235-4

Keywords

Navigation