Skip to main content
Log in

Evaluation of Dynamic and Fatigue Behavior of Damaged Steel Beams Strengthened with Different Types of Techniques and a New Strengthening Method Proposal

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, the use of carbon fiber-reinforced polymers to strengthen fatigue-damaged steel beams has increased significantly as an alternative to traditional methods due to their easy application to the damaged area, lightweight, durability, and sustainability. In addition to all these positive contributions, there are some disadvantages, such as debonding damage under loading. These disadvantages encourage researchers to produce new materials or apply materials used for other purposes in other fields for fatigue damage. In this paper, an alternative new strengthening technique is mentioned to improve the dynamic and fatigue behavior of fatigue-damaged steel beams. This technique is a strengthening application made using epoxy-based filler and carbon fiber-reinforced polymer fabric. Numerical and experimental studies are carried out on fatigue-damaged steel beams by applying this new technique and using different carbon fiber-reinforced polymers, such as a single and double layer of fabric and a single plate layer. The most significant improvement in dynamic behavior occurred on the specimen, strengthened with this newly proposed technique. In contrast, the lowest increase occurs on the sample strengthened with a single layer of fabric. While the lowest increase arises on the sample strengthened with a single layer of fabric in terms of fatigue life, the most significant progress in fatigue behavior makes on the sample strengthened with a single plate layer. As a result of comparing the results, it is concluded that this new strengthening technique could be an essential alternative to the currently used strengthening methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. Begos, J.M.; Brinson, J.R.; Byrd, L.G.; Millar, W.W.; Paaswell, R.E.; Pitz, J.P.; Richardson, H.H.; Rideoutfe, J.G.; Turner, C.E.; Metropolitan, W.: Distortion-Induced Fatigue Cracking in Steel Bridges, National Cooperative Highway Research Program (NCHRP) Report 336. , Washington, D. C. (1990)

  2. Connor, R.J., Lloyd, J.B.: Maintenance Actions to Address Fatigue Cracking in Steel Bridge Structures, Proposed Guidelines and Commentary, Technical Report Prepared for NCHRP Transportation Research Board of the National Academies. (2017)

  3. Fhwa: Manual for Repair and Retrofit of Fatigue Cracks in Steel Bridges, Technical Report, FHWA Publication No. FHWA-IF-13-020. (2013)

  4. Tavakkolizadeh, M.; Saadatmanesh, H.: Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch. J. Struct. Eng. 129, 186–196 (2003). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(186)

    Article  Google Scholar 

  5. Kim, Y.J.; Green, M.F.; Wight, R.G.: Flexural behaviour of reinforced or prestressed concrete beams including strengthening with prestressed carbon fibre reinforced polymer sheets: application of a fracture mechanics approach. Can. J. Civ. Eng. 34, 664–677 (2007). https://doi.org/10.1139/L06-161

    Article  Google Scholar 

  6. Van Den Einde, L.; Zhao, L.; Seible, F.: Use of FRP composites in civil structural applications. Constr. Build. Mater. 17, 389–403 (2003). https://doi.org/10.1016/S0950-0618(03)00040-0

    Article  Google Scholar 

  7. Kim, Y.J.; Heffernan, P.J.: Fatigue behavior of externally strengthened concrete beams with fiber-reinforced polymers: state of the art. J. Compos. Constr. 12, 246–256 (2008). https://doi.org/10.1061/(ASCE)1090-0268(2008)12:3(246)

    Article  Google Scholar 

  8. Miller, T.C.; Chajes, M.J.; Mertz, D.R.; Hastings, J.N.: Strengthening of a steel bridge girder using CFRP plates. J. Bridg. Eng. 6, 514–522 (2001). https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(514)

    Article  Google Scholar 

  9. Jones, S.C.; Civjan, S.A.: Application of fiber reinforced polymer overlays to extend steel fatigue life. J. Compos. Constr. 7, 331–338 (2003). https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(331)

    Article  Google Scholar 

  10. Luke, S.; Canning, L.: Strengthening highway and railway bridge structures with FRP composites-case studies. Adv. Polym. Compos. Struct. Appl. Constr. 5, 747–754 (2004). https://doi.org/10.1533/9781845690649.8.747

    Article  Google Scholar 

  11. National Research Council: Guidelines for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures. (2007)

  12. Zhao, X.L.; Zhang, L.: State-of-the-art review on FRP strengthened steel structures. Eng. Struct. 29, 1808–1823 (2007). https://doi.org/10.1016/J.ENGSTRUCT.2006.10.006

    Article  Google Scholar 

  13. Colombi, P.; Fava, G.; Poggi, C.; Sonzogni, L.: Fatigue reinforcement of steel elements by CFRP materials: experimental evidence, analytical model and numerical simulation. Procedia Eng. 74, 384–387 (2014). https://doi.org/10.1016/j.proeng.2014.06.284

    Article  Google Scholar 

  14. Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C.: Fiber-reinforced polymer composites for construction state-of-the-art review. J. Compos. Constr. 6, 73–87 (2002). https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)

    Article  Google Scholar 

  15. Liu, H.; Xiao, Z.; Zhao, X.L.; Al-Mahaidi, R.: Prediction of fatigue life for CFRP-strengthened steel plates. Thin-Walled Struct. 47, 1069–1077 (2009). https://doi.org/10.1016/J.TWS.2008.10.011

    Article  Google Scholar 

  16. Tsouvalis, N.G.; Mirisiotis, L.S.; Dimou, D.N.: Experimental and numerical study of the fatigue behaviour of composite patch reinforced cracked steel plates. Int. J. Fatigue 10, 1613–1627 (2009). https://doi.org/10.1016/J.IJFATIGUE.2009.04.006

    Article  Google Scholar 

  17. Kim, Y.J.; Longworth, J.M.; Wight, R.G.; Green, M.F.: Punching shear of two-way slabs retrofitted with prestressed or non-prestressed CFRP sheets. J. Reinforced Plastics Compos. 29, 1206–1223 (2009). https://doi.org/10.1177/0731684409103143

    Article  Google Scholar 

  18. Wu, G.; Wang, H.-T.; Wu, Z.-S.; Liu, H.-Y.; Ren, Y.: Experimental study on the fatigue behavior of steel beams strengthened with different fiber-reinforced composite plates. J. Compos. Constr. 16, 127–137 (2012). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000243

    Article  Google Scholar 

  19. Wang, H.-T.; Wu, G.; Wu, Z.-S.: Effect of FRP configurations on the fatigue repair effectiveness of cracked steel plates. J. Compos. Constr. 18, 04013023 (2013). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000422

    Article  Google Scholar 

  20. Feng, P.; Zhang, Y.; Bai, Y.; Ye, L.: Combination of bamboo filling and FRP wrapping to strengthen steel members in compression. J. Compos. Constr. 17, 347–356 (2012). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000353

    Article  Google Scholar 

  21. Feng, P.; Zhang, Y.; Bai, Y.; Ye, L.: Strengthening of steel members in compression by mortar-filled FRP tubes. Thin-Walled Struct. 64, 1–12 (2013). https://doi.org/10.1016/J.TWS.2012.11.001

    Article  Google Scholar 

  22. Colombi, P.; Bassetti, A.; Nussbaumer, A.: Crack growth induced delamination on steel members reinforced by prestressed composite patch. Fatigue Fract. Eng. Mater. Struct. 26, 429–438 (2003). https://doi.org/10.1046/J.1460-2695.2003.00642.X

    Article  Google Scholar 

  23. Deng, J.; Jia, Y.; Zheng, H.: Theoretical and experimental study on notched steel beams strengthened With CFRP plate. Compos. Struct. 136, 450–459 (2016). https://doi.org/10.1016/J.COMPSTRUCT.2015.10.024

    Article  Google Scholar 

  24. Colombi, P.; Fava, G.: Fatigue crack growth in steel beams strengthened By CFRP strips. Theoret. Appl. Fract. Mech. 85, 173–182 (2016). https://doi.org/10.1016/J.TAFMEC.2016.01.007

    Article  Google Scholar 

  25. Yu, Q.Q.; Wu, Y.F.: Fatigue behaviour of cracked steel beams retrofitted with carbon fibre-reinforced polymer laminates. Adv. Struct. Eng. 21, 1148–1161 (2017). https://doi.org/10.1177/1369433217729518

    Article  Google Scholar 

  26. Yu, Q.Q.; Wu, Y.F.: Fatigue retrofitting of cracked steel beams with CFRP laminates. Compos. Struct. 192, 232–244 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.02.090

    Article  Google Scholar 

  27. Lenwari, A.; Thepchatri, T.; Albrecht, P.: Debonding strength of steel beams strengthened with CFRP plates. J. Compos. Constr. 10, 69–78 (2006). https://doi.org/10.1061/(ASCE)1090-0268(2006)10:1(69)

    Article  Google Scholar 

  28. Bocciarelli, M.; Colombi, P.; Fava, G.; Poggi, C.: Fatigue performance of tensile steel members strengthened with CFRP plates. Compos. Struct. 87, 334–343 (2009). https://doi.org/10.1016/J.COMPSTRUCT.2008.02.004

    Article  Google Scholar 

  29. Kim, Y.J.; Harries, K.A.: Fatigue behavior of damaged steel beams repaired with CFRP strips. Eng. Struct. 33, 1491–1502 (2011). https://doi.org/10.1016/J.ENGSTRUCT.2011.01.019

    Article  Google Scholar 

  30. Wu, C.; Zhao, X.L.; Al-Mahaidi, R.; Emdad, M.; Duan, W.: Fatigue tests of cracked steel plates strengthened with UHM CFRP plates. Adv. Struct. Eng. 15, 1801–1815 (2012). https://doi.org/10.1260/1369-4332.15.10.1801

    Article  Google Scholar 

  31. Colombi, P.; Fava, G.: Experimental study on the fatigue behaviour of cracked steel beams repaired With CFRP plates. Eng. Fract. Mech. 145, 128–142 (2015). https://doi.org/10.1016/J.ENGFRACMECH.2015.04.009

    Article  Google Scholar 

  32. Zheng, B.; Dawood, M.: Debonding of carbon fiber-reinforced polymer patches from cracked steel elements under fatigue loading. J. Compos. Constr. 20, 04016038 (2016). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000694

    Article  Google Scholar 

  33. Altunişik, A.C.; Okur, F.Y.; Kahya, V.: Structural identification of a cantilever beam with multiple cracks: modeling and validation. Int. J. Mech. Sci. 130, 74–89 (2017). https://doi.org/10.1016/j.ijmecsci.2017.05.039

    Article  Google Scholar 

  34. Altunışık, A.C.; Okur, F.Y.; Kahya, V.: Automated model updating of multiple cracked cantilever beams for damage detection. J. Constr. Steel Res. 138, 499–512 (2017). https://doi.org/10.1016/j.jcsr.2017.08.006

    Article  Google Scholar 

  35. Altunışık, A.C.; Okur, F.Y.; Karaca, S.; Kahya, V.: Vibration-based damage detection in beam structures with multiple cracks: modal curvature vs. modal flexibility methods. Nondestruct. Test. Eval. 34, 33–53 (2019). https://doi.org/10.1080/10589759.2018.1518445

    Article  Google Scholar 

  36. Altunişik, A.C.; Okur, F.Y.; Kahya, V.: Vibrations of a box-sectional cantilever Timoshenko beam with multiple cracks. Int. J. Steel Struct. 19, 635–649 (2019). https://doi.org/10.1007/s13296-018-0152-5

    Article  Google Scholar 

  37. Kahya, V.; Karaca, S.; Okur, F.Y.; Altunışık, A.C.; Aslan, M.: Free vibrations of laminated composite beams with multiple edge cracks: numerical model and experimental validation. Int. J. Mech. Sci. 159, 30–42 (2019). https://doi.org/10.1016/j.ijmecsci.2019.05.032

    Article  Google Scholar 

  38. Altunışık, A.C.; Okur, F.Y.; Kahya, V.: Modal parameter identification and vibration based damage detection of a multiple cracked cantilever beam. Eng. Fail. Anal. 79, 154–170 (2017). https://doi.org/10.1016/j.engfailanal.2017.04.026

    Article  Google Scholar 

  39. Gunaydin, M.; Adanur, S.; Altunisik, A.C.; Sevim, B.: Static and dynamic responses of halgavor footbridge using steel and FRP materials. Steel Compos. Struct. 18, 51–69 (2015)

    Article  Google Scholar 

  40. Hüsem, M.; Nasery, M.M.; Okur, F.Y.; Altunişik, A.C.: Experimental evaluation of damage effect on dynamic characteristics of concrete encased composite column-beam connections. Eng. Fail. Anal. 91, 129–150 (2018). https://doi.org/10.1016/j.engfailanal.2018.04.030

    Article  Google Scholar 

  41. Bayraktar, A.; Altunişik, A.C.; Türker, T.: Structural health assessment and restoration procedure of an old riveted steel arch bridge. Soil Dyn. Earthq. Eng. 83, 148–161 (2016). https://doi.org/10.1016/j.soildyn.2016.01.012

    Article  Google Scholar 

  42. Altunişik, A.C.; Günaydin, M.; Sevim, B.; Bayraktar, A.; Adanur, S.: CFRP composite retrofitting effect on the dynamic characteristics of arch dams. Soil Dyn. Earthq. Eng. 74, 1–9 (2015). https://doi.org/10.1016/j.soildyn.2015.03.008

    Article  Google Scholar 

  43. Bendat, J.S.; Piersol, A.G.: Random Data: Analysis and Measurement Procedures. Wiley, New York (2010)

    Book  Google Scholar 

  44. Yu, D.J.; Ren, W.X.: EMD-based stochastic subspace identification of structures from operational vibration measurements. Eng. Struct. 27, 1741–1751 (2005). https://doi.org/10.1016/J.ENGSTRUCT.2005.04.016

    Article  Google Scholar 

  45. Hmidan, A.; Kim, Y.J.; Yazdani, S.: CFRP repair of steel beams with various initial crack configurations. J. Compos. Constr. 15, 952–962 (2011). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000223

    Article  Google Scholar 

  46. Jiao, H.; Mashiri, F.; Zhao, X.L.: A comparative study on fatigue behaviour of steel beams retrofitted with welding, pultruded CFRP plates and wet layup CFRP sheets. Thin-Walled Struct. 59, 144–152 (2012). https://doi.org/10.1016/J.TWS.2012.06.002

    Article  Google Scholar 

  47. Hmidan, A.; Kim, Y.J.; Yazdani, S.: Effect of sustained load combined with cold temperature on flexure of damaged steel beams repaired with CFRP sheets. Eng. Struct. 56, 1957–1966 (2013). https://doi.org/10.1016/J.ENGSTRUCT.2013.08.020

    Article  Google Scholar 

  48. Kamruzzaman, M.; Jumaat, M.Z.; Ramlisulong, N.H.; Islam, A.B.M.S.: A review on strengthening steel beams using FRP under Fatigue. Sci World J 2014, 58 (2014). https://doi.org/10.1155/2014/702537

    Article  Google Scholar 

  49. Hmidan, A.; Kim, Y.J.; Yazdani, S.: Correction factors for stress intensity of CFRP-strengthened wide-flange steel beams with various crack configurations. Constr. Build. Mater. 5, 522–530 (2014). https://doi.org/10.1016/J.CONBUILDMAT.2014.08.008

    Article  Google Scholar 

  50. Ghafoori, E.; Motavalli, M.; Zhao, X.L.; Nussbaumer, A.; Fontana, M.: Fatigue design criteria for strengthening metallic beams with bonded CFRP plates. Eng. Struct. 101, 542–557 (2015). https://doi.org/10.1016/J.ENGSTRUCT.2015.07.048

    Article  Google Scholar 

  51. Ghafoori, E.; Motavalli, M.: Normal, high and ultra-high modulus carbon fiber-reinforced polymer laminates for bonded and un-bonded strengthening of steel beams. Mater. Des. 67, 232–243 (2015). https://doi.org/10.1016/J.MATDES.2014.11.031

    Article  Google Scholar 

  52. Ghafoori, E.; Motavalli, M.: Innovative CFRP-prestressing system for strengthening metallic structures. J. Compos. Constr. 19, 04015006 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000559

    Article  Google Scholar 

  53. Deng, J.; Lee, M.M.K.: Adhesive bonding in steel beams strengthened with CFRP. Struct. Build. 162, 241–249 (2015). https://doi.org/10.1680/STBU.2009.162.4.241

    Article  Google Scholar 

  54. Yu, Q.-Q.; Wu, Y.-F.: Fatigue strengthening of cracked steel beams with different configurations and materials. J. Compos. Constr. 21, 04016093 (2016). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000750

    Article  Google Scholar 

  55. Yu, Q.Q.; Wu, Y.F.: Fatigue durability of cracked steel beams retrofitted with high-strength materials. Constr. Build. Mater. 155, 1188–1197 (2017). https://doi.org/10.1016/J.CONBUILDMAT.2017.09.051

    Article  Google Scholar 

  56. Chen, T.; Wang, X.; Qi, M.: Fatigue improvements of cracked rectangular hollow section steel beams strengthened with CFRP plates. Thin-Walled Struct. 122, 371–377 (2018). https://doi.org/10.1016/J.TWS.2017.10.019

    Article  Google Scholar 

  57. Bocciarelli, M.; Colombi, P.; D’Antino, T.; Fava, G.: Intermediate crack induced debonding in steel beams reinforced with CFRP plates under fatigue loading. Eng. Struct. 171, 883–893 (2018). https://doi.org/10.1016/J.ENGSTRUCT.2018.04.002

    Article  Google Scholar 

  58. Chen, T.; Gu, X.-L.; Qi, M.; Yu, Q.-Q.: Experimental study on fatigue behavior of cracked rectangular hollow-section steel beams repaired with prestressed CFRP plates. J. Compos. Constr. 22, 04018034 (2018). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000872

    Article  Google Scholar 

  59. Ghafoori, E.; Motavalli, M.; Botsis, J.; Herwig, A.; Galli, M.: Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates. Int. J. Fatigue 44, 303–315 (2012). https://doi.org/10.1016/J.IJFATIGUE.2012.03.006

    Article  Google Scholar 

  60. Ghafoori, E.; Schumacher, A.; Motavalli, M.: Fatigue behavior of notched steel beams reinforced with bonded CFRP plates: determination of prestressing level for crack arrest. Eng. Struct. 45, 270–283 (2012). https://doi.org/10.1016/J.ENGSTRUCT.2012.06.047

    Article  Google Scholar 

  61. Ye, H.; Li, C.; Pei, S.; Ummenhofer, T.; Qu, H.: Fatigue performance analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates. J. Bridg. Eng. 23, 04018040 (2018). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001251

    Article  Google Scholar 

  62. Siwowski, T.W.; Siwowska, P.: Experimental study on CFRP-strengthened steel beams. Compos. B Eng. 149, 12–21 (2018). https://doi.org/10.1016/J.COMPOSITESB.2018.04.060

    Article  Google Scholar 

  63. Ghafoori, E.; Motavalli, M.: Analytical calculation of stress intensity factor of cracked steel I-beams with experimental analysis and 3D digital image correlation measurements. Eng. Fract. Mech. 78, 3226–3242 (2011). https://doi.org/10.1016/J.ENGFRACMECH.2011.09.012

    Article  Google Scholar 

  64. Li, J.; Wang, Y.; Deng, J.; Jia, Y.: Experimental study on the flexural behaviour of notched steel beams strengthened by prestressed CFRP plate with an end plate anchorage system. Eng. Struct. 171, 29–39 (2018). https://doi.org/10.1016/J.ENGSTRUCT.2018.05.042

    Article  Google Scholar 

  65. PULSE, Analyzers and Solutions, Release 11.2. Bruel and Kjaer, Sound and Vibration Measurement A/S, Denmark, 2006.

  66. OMA, Software: Operational Modal Analysis, Release 4.0. Structural Vibration Solution A/S, Denmark, 2006.

  67. ANSYS, Swanson Analysis System, USA, (2015)

Download references

Acknowledgements

Thanks to Dr. Murat Günaydın and Fatih Yesevi Okur for their contributions to this study.

Funding

This work was supported by Scientific Research Projects Coordination Unit of Karadeniz Technical University. Project Number 8074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ergün.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergün, M., Ateş, Ş. Evaluation of Dynamic and Fatigue Behavior of Damaged Steel Beams Strengthened with Different Types of Techniques and a New Strengthening Method Proposal. Arab J Sci Eng 49, 4969–4994 (2024). https://doi.org/10.1007/s13369-023-08233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08233-6

Keywords

Navigation