Skip to main content
Log in

Investigation into the Effect of Replacing Natural Sand by Normalized Crushed Sand on Concrete Performance

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the context of sustainable development and environmental protection, the current study aims to give scientific evidence of the feasibility of replacing natural siliceous sand with crushed limestone sand in concrete. It assesses the effect of this replacement by comparing concretes without natural sand to a reference mix incorporating natural sand. For fixed water-to-cement ratio, cement content, and coarse aggregates proportions, and for different dosages of admixture to reach the same slump, the results proved that the concrete containing natural sand required more admixture to reach the same slump value as the crushed limestone sand concrete. For the same workability, the compressive and flexural strengths were not affected by the total replacement of natural sand with crushed sand. The three types of concrete fell within the same range of durability even though scanning electron microscope (SEM) analysis seemed to reveal a better paste-fine aggregate interface for crushed sand concrete. The concrete properties could be maintained when using crushed limestone sand conforming to the standard grading requirements, as the only fine aggregate in concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. UNEP Global Environmental Alert Service GEAS: Sand, rarer than one thinks. www.unep.org/geas (2014)

  2. Donza, H.; Cabrera, O.; Irassar, E.F.: High strength concrete with different fine aggregate. Cem. Concr. Res. 32, 1755–1761 (2002)

    Article  Google Scholar 

  3. Akrout, K.; Mounanga, P.; Ltifi, M.; Ben Jamaa, N.: Rheological, mechanical and structural performances of crushed limestone sand concrete. Int. J. Concr. Struct. Mater. 4(2), 97–104 (2010). https://doi.org/10.4334/IJCSM.2010.4.2.97

    Article  Google Scholar 

  4. Bederina, M.; Makhloufi, Z.; Bounoua, A.; Bouziani, T.; Quéneudec, M.: Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Constr. Build. Mater. 47, 146–158 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.037

    Article  Google Scholar 

  5. Stefanidou, M.: Crushed and river-origin sands used as aggregates in repair mortars. Geosciences 6(2), 23 (2016). https://doi.org/10.3390/geosciences6020023

    Article  Google Scholar 

  6. Gameiro, F.; De Brito, J.; Correia da Silva, D.: Durability performance of structural concrete containing fine aggregates from waste generated by marble quarrying industry. Eng. Struct. 59, 654–662 (2014). https://doi.org/10.1016/j.engstruct.2013.11.026

  7. Binici, H.; Aksogan, O.: Durability of concrete made with natural granular granite, silica sand and powders of waste marble and basalt as fine aggregate. J. Build. Eng. 19, 109–121 (2018). https://doi.org/10.1016/j.jobe.2018.04.022

    Article  Google Scholar 

  8. Cordeiro, G.C.; De Alvarenga, L.M.S.C.; Rocha, C.A.A.: Rheological and mechanical properties of concrete containing crushed granite fine aggregate. Constr. Build. Mater. 111, 766–773 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.178

    Article  Google Scholar 

  9. Mundra, S.; Sindhi, P.R.; Chandwani, V.; Nagar, R.; Agrawal, V.: Crushed rock sand—an economical and ecological alternative to natural sand to optimize concrete mix. Perspect. Sci. 8, 345–347 (2016). https://doi.org/10.1016/j.pisc.2016.04.070

    Article  Google Scholar 

  10. Shen, W.; Liu, Y.; Cao, L.; Huo, X.; Yang, Z.; Zhou, C.; He, P.; Lu, Z.: Mixing design and microstructure of ultra high strength concrete with manufactured sand. Constr. Build. Mater. 143, 312–321 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.092

    Article  Google Scholar 

  11. Kou, S.C.; Poon, C.S.: Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Constr. Build. Mater. 23(8), 2877–2886 (2009)

    Article  Google Scholar 

  12. Singh, M.; Siddique, R.: Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr. Build. Mater. 50, 246–256 (2014)

    Article  Google Scholar 

  13. Rafieizonooz, M.; Salim, M.R.; Mirza, J.; Hussin, M.W.; Salmiati Khan, R.; Khankhaje, E.: Toxicity characteristics and durability of concrete containing coal ash as substitute for cement and river sand. Constr. Build. Mater. 143, 234–246 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.151

    Article  Google Scholar 

  14. Saxena, S.; Pofale, A.D.: Effective utilization of fly ash and waste gravel in green concrete by replacing natural sand and crushed coarse aggregate. Mater. Today Proc. 4(9), 9777–9783 (2017). https://doi.org/10.1016/j.matpr.2017.06.266

    Article  Google Scholar 

  15. Agrawal, U.S.; Wanjari, S.P.; Naresh, D.N.: Characteristic study of geopolymer fly ash sand as a replacement to natural river sand. Constr. Build. Mater. 150, 681–688 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.029

    Article  Google Scholar 

  16. Aggarwal, Y.; Siddique, R.: Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr. Build. Mate. 54, 210–223 (2014). https://doi.org/10.1016/j.conbuildmat.2013.12.051

    Article  Google Scholar 

  17. Coppio, G.J.L.; De Lima, M.G.; Lencioni, J.W.; Cividanes, L.S.; Dyer, P.P.O.L.; Silva, S.A.: Surface electrical resistivity and compressive strength of concrete with the use of waste foundry sand as aggregate. Constr. Build. Mater. 212, 514–521 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.297

    Article  Google Scholar 

  18. Qasrawi, H.; Shalabi, F.; Asi, I.: Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr. Build. Mater. 23(2), 1118–1125 (2009). https://doi.org/10.1016/j.conbuildmat.2008.06.003

    Article  Google Scholar 

  19. Noufal, E.R.; Manju, U.: I-Sand: an environment friendly alternative to river sand in reinforced cement concrete constructions. Constr. Build. Mater. 125, 1152–1157 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.130

    Article  Google Scholar 

  20. Singh, G.; Siddique, R.: Strength properties and micro-structural analysis of self-compacting concrete made with iron slag as partial replacement of fine aggregates. Constr. Build. Mater. 127, 144–152 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.154

    Article  Google Scholar 

  21. Liu, X.; Li, T.; Tian, W.; Wang, Y.; Chen, Y.: Study on the durability of concrete with FNS fine aggregate. J. Hazardous Mater. 381, 120936 (2020). https://doi.org/10.1016/j.jhazmat.2019.120936

    Article  Google Scholar 

  22. Panda, C.R.; Mishra, K.K.; Panda, K.C.; Nayak, B.D.; Nayak, B.B.: Environmental and technical assessment of ferrochrome slag as concrete aggregate material. Constr. Build. Mater. 49, 262–271 (2013). https://doi.org/10.1016/j.conbuildmat.2013.08.002

    Article  Google Scholar 

  23. Al-Jabri, K.S.; Al-Saidy, A.H.; Taha, R.: Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Constr. Build. Mater. 25(2), 933–938 (2011). https://doi.org/10.1016/j.conbuildmat.2010.06.090

    Article  Google Scholar 

  24. Dos Anjos, M.A.G.; Sales, A.T.C.; Andrade, N.: Blasted copper slag as fine aggregate in portland cement concrete. J. Environ. Manag. 196, 607–613 (2017). https://doi.org/10.1016/j.jenvman.2017.03.032

    Article  Google Scholar 

  25. Kurda, R.; De Brito, J.; Silvestre, J.D.: Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cement Concr. Compos. 95, 169–182 (2019). https://doi.org/10.1016/j.cemconcomp.2018.10.004

    Article  Google Scholar 

  26. Topçu, I.B.; Bilir, T.: Experimental investigation of drying shrinkage cracking of composite mortars incorporating crushed tile fine aggregate. Mater. Des. 31(9), 4088–4097 (2010). https://doi.org/10.1016/j.matdes.2010.04.047

    Article  Google Scholar 

  27. Alves, A.V.; Vieira, T.F.; De Brito, J.; Correia, J.R.: Mechanical properties of structural concrete with fine recycled ceramic aggregates. Constr. Build. Mater. 64, 103–113 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.037

    Article  Google Scholar 

  28. Debieb, F.; Kenai, S.: The use of coarse and fine crushed bricks as aggregate in concrete. Constr. Build. Mater. 22(5), 886–893 (2008). https://doi.org/10.1016/j.conbuildmat.2006.12.013

    Article  Google Scholar 

  29. Kim, I.S.; Choi, S.Y.; Yang, E.I.: Evaluation of durability of concrete substituted heavyweight waste glass as fine aggregate. Constr. Build. Mater. 184, 269–277 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.221

    Article  Google Scholar 

  30. Ismail, Z.Z.; Al-Hashmi, E.A.: Recycling of waste glass as a partial replacement for fine aggregate in concrete. Waste Manag. 29(2), 655–659 (2009). https://doi.org/10.1016/j.wasman.2008.08.012

    Article  Google Scholar 

  31. De Castro, S.; De Brito, J.: Evaluation of the durability of concrete made with crushed glass aggregates. J. Clean. Prod. 41, 7–14 (2013)

    Article  Google Scholar 

  32. Choi, Y.W.; Moon, D.J.; Kim, Y.J.; Lachemi, M.: Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Constr. Build. Mater. 23(8), 2829–2835 (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.036

    Article  Google Scholar 

  33. Senhadji, Y.; Escadeillas, G.; Benosman, A.S.; Mouli, M.; Khelafi, H.; Ould Kaci, S.: Effect of incorporating PVC waste as aggregate on the physical, mechanical, and chloride ion penetration behavior of concrete. J. Adhes. Sci. Technol. 29(7), 625–640 (2015). https://doi.org/10.1080/01694243.2014.1000773

    Article  Google Scholar 

  34. Hama, S.M.; Hilal, N.N.: Fresh properties of self-compacting concrete with plastic waste as partial replacement of sand. Int. J. Sustain. Built Environ. 6(2), 299–308 (2017). https://doi.org/10.1016/j.ijsbe.2017.01.001

    Article  Google Scholar 

  35. Saikia, N.; De Brito, J.: Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 52, 236–244 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.049

    Article  Google Scholar 

  36. Javelas, R.; Maso, J.C.; Ollivier, J.P.; Thenoz, B.: Observation directe au microscope électronique par transmission de la liaison pâte de ciment—Granulats dans des mortiers de calcite et de quartz. Cem. Concr. Res. 5, 285–294 (1975)

    Article  Google Scholar 

  37. Grandet, J.; Ollivier, J.P.: Etude de la formation du monocarboaluminate de calcium hydraté au contact d’un granulat calcaire dans une pâte de ciment portland. Cem. Concr. Res. 10, 759–770 (1980)

    Article  Google Scholar 

  38. Farran, J.: Contribution minéralogique à l’étude de l’adhérence entre les constituants hydratés des ciments et les matériaux enrobés. Revue des Matériaux de Construction (1956)

  39. Ollivier, J.P.; Maso, J.C.; Bourdette, B.: Interfacial transition zone in concrete. Adv. Cem. Based Mater. 2(1), 30–38 (1995). https://doi.org/10.1016/1065-7355(95)90037-3

    Article  Google Scholar 

  40. Bentz, D.P.; Ardani, A.; Barrett, T.; Jones, S.Z.; Lootens, D.; Peltz, M.A.; Sato, T.; Stutzman, P.E.; Tanesi, J.; Weiss, W.J.: Multi-scale investigation of the performance of limestone in concrete. Constr. Build. Mater. 75, 1–10 (2015). https://doi.org/10.1016/j.conbuildmat.2014.10.042

    Article  Google Scholar 

  41. Li, B.; Ke, G.; Zhou, M.: Influence of manufactured sand characteristics on strength and abrasion resistance of pavement cement concrete. Constr. Build. Mater. 25(10), 3849–3853 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.004

    Article  Google Scholar 

  42. Makhloufi, Z.; Bouziani, T.; Bédérina, M.; Hadjoudja, M.: Mix proportioning and performance of a crushed limestone sand–concrete. J. Build. Mater. Struct. 1, 10–22 (2014)

    Article  Google Scholar 

  43. Bonavetti, V.L.; Irassar, E.F.: The effect of stone dust content in sand. Cem. Concr. Res. 24(3), 580–590 (1994)

    Article  Google Scholar 

  44. Benyamina, S.; Menadi, B.; Bernard, S.K.; Kenai, S.: Performance of self-compacting concrete with manufactured crushed sand. Adv. Concr. Constr. 7(2), 87–96 (2019). https://doi.org/10.12989/acc.2019.7.2.087

    Article  Google Scholar 

  45. Shen, W.; Liu, Y.; Wang, Z.; Cao, L.; Wu, D.; Wang, Y.; Ji, X.: Influence of manufactured sand’s characteristics on its concrete performance. Constr. Build. Mater. 172, 574–583 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.139

    Article  Google Scholar 

  46. Li, B.; Wang, J.; Zhou, M.: Effect of limestone fines content in manufactured sand on durability of low- and high- strength concrete. Constr. Build. Mater. 23(8), 2846–2850 (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.033

    Article  Google Scholar 

  47. Gokce, A.; Beyaz, C.; Ozkan, H.: Influence of fines content on durability of slag cement concrete produced with limestone sand. Constr. Build. Mater. 111, 419–428 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.139

    Article  Google Scholar 

  48. Hamad, B.S.; Yassine, M.Y.; Khawlie, M.R.: Survey study on geology and location of major sand resources in Lebanon. Eastern Mediterranean. Bulletin of the International Association of Engineering Geology. No. 53, Paris, April (1996)

  49. Khawlie, M.R.; Hinai, K.: Geology and production of construction material resources of Lebanon: a preliminary study. Eng. Geol. 15, 223–232 (1980)

    Article  Google Scholar 

  50. ASTM C33.: Standard specification for concrete aggregates. ASTM International, West Conshohocken, PA (2016)

  51. GIZ.: Country report on the solid waste management in Lebanon. The Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb Countries (2014)

  52. Ministry of Environment.: Quarries in Lebanon. ABQUAR Project, Ministry of Environment (2006). http://www.moe.gov.lb/abquar/en/1b-en.htm

  53. NF EN 196-2. : Méthodes d'Essais des Ciments–Partie 2: Analyse Chimique des Ciments," Normes Européennes, AFNOR (2013)

  54. ASTM D2419.: Standard test method for sand equivalent value of soils and fine aggregate. ASTM International, West Conshohocken, PA (2014)

  55. ASTM C123.: Standard test method for lightweight particles in aggregates. ASTM International, West Conshohocken, PA (2014)

  56. ASTM C142.: Standard test method for clay lumps and friable particles in aggregates. ASTM International, West Conshohocken, PA (2017)

  57. BS EN 933-9.: Assessment of fines—Methylene blue test. European Standards, British Standards Institution, London, UK (1999)

  58. ASTM C595.: Standard specification for blended hydraulic cements. ASTM International, West Conshohocken, PA (2017)

  59. BS EN 197-1.: Cement: Composition, specifications and conformity criteria for common cements. European Standards, British Standards Institution, London, UK (2011)

  60. BS EN 196-1.: Method of testing cement—Part 1: Determination of strength. European Standards, European Standards, British Standards Institution, London, UK (2005)

  61. ASTM C494.: Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA (2016)

  62. ASTM C143.: Standard test method for slump of hydraulic-cement concrete. ASTM International, West Conshohocken, PA (2015)

  63. ASTM C192.: Standard test method for making and curing concrete test specimens in the laboratory. ASTM International, West Conshohocken, PA (2016)

  64. ASTM C138.: Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete. ASTM International, West Conshohocken, PA (2017)

  65. ASTM C231.: Standard test method for air content of freshly mixed concrete by the pressure method. ASTM International, West Conshohocken, PA (2017)

  66. ASTM C39.: Standard test method for compressive strength of cylindrical concrete specimen. ASTM International, West Conshohocken, PA (2017)

  67. ASTM C78.: Standard test method for flexural strength of concrete (Using simple beam with third-point loading). ASTM International, West Conshohocken, PA (2016)

  68. ASTM C1202.: Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. ASTM International, West Conshohocken, PA (2017)

  69. BS 1881-122.: Method for determination of water absorption. British Standards Institution, London, UK (1983)

  70. BS EN 12390‑16.: Testing hardened concrete—Part 16: Determination of the shrinkage of concrete. European Standards, British Standards Institution, London, UK (2019)

  71. Hasdemir, S.; Tuğrul, A.; Yilmaz, M.: The effect of natural sand composition on concrete strength. Constr. Build. Mater. 112, 940–948 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.188

    Article  Google Scholar 

  72. Shen, W.; Yang, Z.; Cao, L.; Cao, L.; Liu, Y.; Yang, H.; Lu, Z.; Bai, J.: Characterization of manufactured sand: particle shape, surface texture and behavior in concrete. Constr. Build. Mater. 114, 595–601 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.201

    Article  Google Scholar 

  73. Santos, A.C.P.; Ortiz-Lozano, J.A.; Villegas, N.; Aguado, A.: Experimental study about the effects of granular skeleton distribution on the mechanical properties of self-compacting concrete (SCC). Constr. Build. Mater. 78, 40–49 (2015). https://doi.org/10.1016/j.conbuildmat.2015.01.006

    Article  Google Scholar 

  74. Pocock, D.; Corrans, J.: Concrete durability testing in Middle East construction. Concr. Eng. Int. 11, 52–54 (2007)

    Google Scholar 

  75. Al-Amoudi, O.S.B.; Al-Kutti, W.A.; Ahmad, S.; Maslehuddin, M.: Correlation between compressive strength and certain durability indices of plain and blended cement concretes. Cement Concr. Compos. 31(9), 672–676 (2009). https://doi.org/10.1016/j.cemconcomp.2009.05.005

    Article  Google Scholar 

  76. Struble, L.; Skanly, J.; Mindess, S.: A review of the cement—aggregate bond. Cement Concr. Res. 10, 277–286 (1980)

    Article  Google Scholar 

  77. Ribeiro, S.; Ribeiro, D.; de, C.; Souza Dias, M.B.; de, S.; Garcia, G.C.R.; Dos Santos, É.M.B.: Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates. Mater. Res. 14(1), 46–52 (2011). https://doi.org/10.1590/S1516-14392011005000004

  78. Akçaoǧlu, T.; Tokyay, M.; Çelik, T.: Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete. Cem. Concr. Res. 35(2), 358–363 (2005). https://doi.org/10.1016/j.cemconres.2004.05.042

    Article  Google Scholar 

Download references

Acknowledgments

The funds and technical support provided by Advanced Construction Technology Services (ACTS) are greatly appreciated. The Laboratory for Materials and Durability of Construction (LMDC) of Toulouse is also acknowledged for offering expertise and technical assistance during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Abi Farraj.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abi Farraj, F., Vidal, T., El Barrak, M. et al. Investigation into the Effect of Replacing Natural Sand by Normalized Crushed Sand on Concrete Performance. Arab J Sci Eng 49, 4745–4761 (2024). https://doi.org/10.1007/s13369-023-08221-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08221-w

Keywords

Navigation