Skip to main content

Advertisement

Log in

A Techno-Economic Review of Dust Accumulation and Cleaning Techniques for Solar Energy Harvesting Devices

  • Review Article--Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Solar energy is a promising and sustainable natural resource that can be harnessed through solar harvesting devices such as photovoltaic (PV) cells and concentrating solar collectors. The efficiency of these systems can reach up to 23% and 70%, respectively. However, their performance is significantly affected by geographical and environmental factors, such as orientation, inclination angle, longitude, latitude, solar intensity, shade, wind, temperature, and dust accumulation. Among these factors, dust deposition is a major contributor to reduced efficiency, power production, and profitability of solar energy harvesting devices. Accumulated dust can decrease the efficiency of solar systems by more than 70% within a month, depending on their geographical location. The intensity and characteristics of dust, such as shape, size, meteorology, and type, vary worldwide and are determined by the system. Numerous studies have investigated the intensity of dust and various dust cleaning techniques with prospects and challenges to restore the performance of solar energy harvesting systems. This paper focuses on the intensity of dust around the Middle East and North Africa (MENA) region. It provides a detailed review of recent investigations into dust-cleaning techniques for solar energy harvesting systems for researchers, designers, and engineers in this field. Furthermore, it includes a techno-economic comparison of the techniques, which can aid in selecting the most suitable dust-cleaning technique for a particular geographic region based on technical and financial aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chaniotakis, E.: Modelling and analysis of water cooled photovoltaics. (2001)

  2. Al-Sharafi, E.A.; Alhussein, M.; Ali, A.; Aurangzeb, K.: Rooftop solar PV policy assessment of global best practices and lessons learned for the kingdom of Saudi Arabia. Sustainability 15(12), 9630 (2023)

    Article  Google Scholar 

  3. Al-Buraiki, A.S.; Al-Sharafi, A.: Technoeconomic analysis and optimization of hybrid solar/wind/battery systems for a standalone house integrated with electric vehicle in Saudi Arabia. Energy Convers. Manag. 250, 114899 (2021). https://doi.org/10.1016/j.enconman.2021.114899

    Article  Google Scholar 

  4. Al-Buraiki, A.S.; Al-Sharafi, A.: Hydrogen production via using excess electric energy of an off-grid hybrid solar/wind system based on a novel performance indicator. Energy Convers. Manag. 254, 115270 (2022). https://doi.org/10.1016/j.enconman.2022.115270

    Article  CAS  Google Scholar 

  5. Zhi, J.; Zhang, L.Z.: Durable superhydrophobic surface with highly antireflective and self-cleaning properties for the glass covers of solar cells. Appl. Surf. Sci. 454, 239–248 (2018). https://doi.org/10.1016/j.apsusc.2018.05.139

    Article  CAS  ADS  Google Scholar 

  6. Al-Buraiki, A.S.; Al-Sharafi, A.; Yilbas, B.S.; Al-Merbati, A.S.; Kassas, M.: Influence of load coordination with solar energy potential on the optimal sizing of standalone PV systems. Energy Convers. Manag. X 17, 100343 (2023). https://doi.org/10.1016/j.ecmx.2022.100343

    Article  Google Scholar 

  7. Al-Maamary, H.M.S.; Kazem, H.A.; Chaichan, M.T.: The impact of oil price fluctuations on common renewable energies in GCC countries. Renew. Sustain. Energy Rev. 75, 989–1007 (2017). https://doi.org/10.1016/j.rser.2016.11.079

    Article  Google Scholar 

  8. Alsagri, A.S.: Photovoltaic and photovoltaic thermal technologies for refrigeration purposes: an overview. Arab. J. Sci. Eng. 47, 7911–7944 (2022). https://doi.org/10.1007/s13369-021-06534-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ye, L.; Zhang, Y.; Zhang, X.; Hu, T.; Ji, R.; Ding, B., et al.: Sol-gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Sol. Energy Mater. Sol Cells 111, 160–164 (2013). https://doi.org/10.1016/j.solmat.2012.12.037

    Article  CAS  Google Scholar 

  10. Rehman, N.; ur, Uzair M, Asif M.: optical design of a novel polygonal trough collector for solar concentrating photovoltaic applications. Arab. J. Sci. Eng. 46, 2963–2973 (2021). https://doi.org/10.1007/s13369-020-05163-5

    Article  Google Scholar 

  11. Waterworth, D.; Armstrong, A.: Southerly winds increase the electricity generated by solar photovoltaic systems. Sol. Energy 202, 123–135 (2020). https://doi.org/10.1016/j.solener.2020.03.085

    Article  ADS  Google Scholar 

  12. Darwish, Z.A.; Kazem, H.A.; Sopian, K.; Alghoul, M.A.; Chaichan, M.T.: Impact of some environmental variables with dust on solar photovoltaic (PV) performance: review and research status. Int. J. Energy Environ. 7(4), 152–159 (2013)

    Google Scholar 

  13. Hee, J.Y.; Kumar, L.V.; Danner, A.J.; Yang, H.; Bhatia, C.S.: The effect of dust on transmission and self-cleaning property of solar panels. Energy Procedia 15, 421–427 (2012). https://doi.org/10.1016/j.egypro.2012.02.051

    Article  CAS  Google Scholar 

  14. Kazem, H.A.; Chaichan, M.T.: Effect of humidity on photovoltaic performance based on experimental study. Int. J. Appl. Eng. Res. (IJAER) 10(23), 43572–43577 (2015)

    Google Scholar 

  15. Chaudhary, T.N.; Manka, A.O.M.; Saleem, M.W.; Ahmed, N.; Rahman, M.U.; Azeem, M.U.: Experimental and performance evaluation of the soiling and cooling effect on the solar photovoltaic modules. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-07858-x

    Article  Google Scholar 

  16. Costa, S.C.S.; Diniz, A.S.A.C.; Kazmerski, L.L.: Dust and soiling issues and impacts relating to solar energy systems: literature review update for 2012–2015. Renew. Sustain. Energy Rev. 63, 33–61 (2016). https://doi.org/10.1016/j.rser.2016.04.059

    Article  Google Scholar 

  17. Stark, J.; Heiling, C.; Hudelson, J.N.; Yellowhair, J.; Horenstein, M.: Electrodynamic removal of dust from solar mirrors and its applications in concentrated solar power (CSP) plants. pp. 1–7 (2014)

  18. Dorobantu, L.; Popescu, M.O.; Popescu, C.; Craciunescu, A.: The effect of surface impurities on photovoltaic panels. Renew. Energy Power. Qual. J. 1, 622–626 (2011). https://doi.org/10.24084/repqj09.405

    Article  Google Scholar 

  19. Zorrilla-Casanova, J.; Piliougine, M.; Carretero, J.; Bernaola, P.; Carpena, P.; Mora-Lopez, L.; et al. Analysis of dust losses in photovoltaic modules. in Proceedings world renewable energy congress—Sweden, Linköping, Sweden, vol. 57, pp. 2985–2992. 8–13 May 2011 (2011). https://doi.org/10.3384/ecp110572985

  20. Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Sopian, K.: A review of dust accumulation and cleaning methods for solar photovoltaic systems. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.123187

    Article  Google Scholar 

  21. Alahmed, S.A.; AlMuhaini, M.M.: A microgrid testbed with hybrid renewables, energy storage, and controllable loads. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-022-07152-2

    Article  Google Scholar 

  22. Alnaser, W.E.; Alnaser, N.W.: The status of renewable energy in the GCC countries. Renew. Sustain. Energy Rev. 15, 3074–3098 (2015). https://doi.org/10.1016/j.rser.2011.03.021

    Article  Google Scholar 

  23. IRENA.: Future of solar photovoltaic: deployment, investment, technology, grid integration and socio-economic aspects (A global energy transformation: paper). Nov 2019.

  24. Hepbasli, A.; Alsuhaibani, Z.: A key review on present status and future directions of solar energy studies and applications in Saudi Arabia. Renew. Sustain. Energy Rev. 15, 5021–5050 (2011). https://doi.org/10.1016/j.rser.2011.07.052

    Article  Google Scholar 

  25. Mamlouk, M.: “Solar Outlook Report 2020” (2020)

  26. Tanaka, T.Y.; Chiba, M.: A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet Change 52, 88–104 (2006). https://doi.org/10.1016/j.gloplacha.2006.02.002

    Article  ADS  Google Scholar 

  27. Saudi Arabia Renewable Energy: https://www.trade.gov/market-intelligence/saudi-arabia-renewable-energy#:~:text=Saudi Arabia has placed ACWA,the other half from gas. (2021)

  28. Dida, M.; Boughali, S.; Bechki, D.; Bouguettaia, H.: Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment. Renew. Sustain. Energy Rev. 124, 109787 (2020). https://doi.org/10.1016/j.rser.2020.109787

    Article  CAS  Google Scholar 

  29. Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S.: Power loss due to soiling on solar panel: a review. Renew. Sustain. Energy Rev. 59, 1307–1316 (2016). https://doi.org/10.1016/j.rser.2016.01.044

    Article  Google Scholar 

  30. Ghazi, S.; Sayigh, A.; Ip, K.: Dust effect on flat surfaces—a review paper. Renew. Sustain. Energy Rev. 33, 742–751 (2014). https://doi.org/10.1016/j.rser.2014.02.016

    Article  Google Scholar 

  31. Mapchart: https://www.mapchart.net/ (2023)

  32. Choobari, O.A.; Zawar-Reza, P.; Sturman, A.: The global distribution of mineral dust and its impacts on the climate system: a review. Atmos. Res. 138, 152–165 (2014). https://doi.org/10.1016/j.atmosres.2013.11.007

    Article  CAS  Google Scholar 

  33. Ebrahim, M.: Sand and dust storms in the Middle East and North Africa (MENA) region. 1st ed. (2019)

  34. De Longueville, F.; Hountondji, Y.C.; Henry, S.; Ozer, P.: What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions? Sci. Total. Environ. 409, 1–8 (2010). https://doi.org/10.1016/j.scitotenv.2010.09.025

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Nusselder, J.: Different types of dust and health effects 2020. https://toolsdoctor.com/different-types-of-dust-and-health-effects/ (2020) Accessed 19 June 2023

  36. Worksafe.: Hazardous dusts 2023. https://www.worksafe.qld.gov.au/safety-and-prevention/hazards/hazardous-exposures/hazardous-dusts (2023) Accessed 19 June 2023

  37. Wikipedia.: Dust 2023. https://en.wikipedia.org/wiki/Dust (2023) Accessed 19 June 2023

  38. National Geographic.: Dust 2023. https://education.nationalgeographic.org/resource/dust/ (2023) Accessed 18 June 2023

  39. Lasfar, S.; Haidara, F.; Mayouf, C.; Abdellahi, F.M.; Elghorba, M.; Wahid, A., et al.: Study of the influence of dust deposits on photovoltaic solar panels: case of Nouakchott. Energy Sustain. Dev. 63, 7–15 (2021). https://doi.org/10.1016/j.esd.2021.05.002

    Article  Google Scholar 

  40. Hicks, W.: Scientists studying solar try solving a dusty problem 2023. https://www.nrel.gov/news/features/2021/scientists-studying-solar-try-solving-a-dusty-problem.html (2023) Accessed 18 June 2023

  41. Salamah, T.; Ramahi, A.; Alamara, K.; Juaidi, A.; Abdallah, R.; Abdelkareem, M.A., et al.: Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: comprehensive review. Sci. Total Environ. 827, 154050 (2022). https://doi.org/10.1016/j.scitotenv.2022.154050

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Souza, J.J.S.; Carvalho, P.C.M.; Barroso, G.C.: Analysis of the characteristics and effects of soiling natural accumulation on 2 photovoltaic systems: a systematic review of the literature. J. Sol. Energy Eng. 145, 1–99 (2022). https://doi.org/10.1115/1.4056453

    Article  CAS  Google Scholar 

  43. Kaldellis, J.K.; Kokala, A.; Kapsali, M.: Natural air pollution deposition impact on the efficiency of PV panels in urban environment. Fresenius Environ. Bull. 19, 2864–2872 (2010)

    CAS  Google Scholar 

  44. Hachicha, A.A.; Al-Sawafta, I.; Said, Z.: Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew. Energy 141, 287–297 (2019). https://doi.org/10.1016/j.renene.2019.04.004

    Article  Google Scholar 

  45. Adıgüzel, E.; Subaşı, N.; Mumcu, T.V.; Ersoy, A.: The effect of the marble dust to the efficiency of photovoltaic panels efficiency by SVM. Energy Rep. 9, 66–76 (2023). https://doi.org/10.1016/j.egyr.2022.10.358

    Article  Google Scholar 

  46. Zhao, W.; Lv, Y.; Zhou, Q.; Yan, W.: Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance. Energy 233, 121240 (2021). https://doi.org/10.1016/j.energy.2021.121240

    Article  Google Scholar 

  47. Juaidi, A.; Muhammad, H.H.; Abdallah, R.; Abdalhaq, R.; Albatayneh, A.; Kawa, F.: Experimental validation of dust impact on-grid connected PV system performance in Palestine: an energy nexus perspective. Energy Nexus 6, 100082 (2022). https://doi.org/10.1016/j.nexus.2022.100082

    Article  Google Scholar 

  48. Jiang, H.; Lu, L.; Sun, K.: Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos Environ. 45, 4299–4304 (2011). https://doi.org/10.1016/j.atmosenv.2011.04.084

    Article  CAS  ADS  Google Scholar 

  49. Hosseini Dehshiri, S.S.; Firoozabadi, B.: Dust cycle, soiling effect and optimum cleaning schedule for PV modules in Iran: a long-term multi-criteria analysis. Energy Convers. Manag. 286, 117084 (2023). https://doi.org/10.1016/j.enconman.2023.117084

    Article  Google Scholar 

  50. Drame, M.S.; Diop, D.; Talla, K.; Diallo, M.; Ngom, B.D.; Nebon, B.: Structural and physicochemical properties of dust collected on PV panels surfaces and their potential influence on these solar modules efficiency in Dakar, Senegal West Africa. Sci. Afr. 12, e00810 (2021). https://doi.org/10.1016/j.sciaf.2021.e00810

    Article  CAS  Google Scholar 

  51. Sahouane, N.; Ziane, A.; Dabou, R.; Neçaibia, A.; Rouabhia, A.; Lachtar, S., et al.: Technical and economic study of the sand and dust accumulation impact on the energy performance of photovoltaic system in Algerian Sahara. Renew. Energy 205, 142–155 (2023). https://doi.org/10.1016/j.renene.2023.01.033

    Article  Google Scholar 

  52. Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T.; Pryor, T.: The contribution of dust to performance degradation of PV modules in a temperate climate zone. Sol. Energy 120, 147–157 (2015). https://doi.org/10.1016/j.solener.2015.06.052

    Article  CAS  ADS  Google Scholar 

  53. Liu, L.; Qian, H.; Sun, E.; Li, B.; Zhang, Z.; Miao, B., et al.: Power reduction mechanism of dust-deposited photovoltaic modules: an experimental study. J. Clean. Prod. 378, 134518 (2022). https://doi.org/10.1016/j.jclepro.2022.134518

    Article  Google Scholar 

  54. Shaik, S.; Vigneshwaran, P.; Roy, A.; Kontoleon, K.J.; Mazzeo, D.; Cuce, E., et al.: Case studies in thermal engineering experimental analysis on the impacts of soil deposition and bird droppings on the thermal performance of photovoltaic panels. Case Stud. Thermal Eng. (2023). https://doi.org/10.1016/j.csite.2023.103128

    Article  Google Scholar 

  55. Ammari, N.; Mehdi, M.; Alami Merrouni, A.; El Gallassi, H.; Chaabelasri, E.; Ghennioui, A.: Experimental study on the impact of soiling on the modules temperature and performance of two different PV technologies under hot arid climate. Heliyon 8, e11395 (2022). https://doi.org/10.1016/j.heliyon.2022.e11395

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kazmerski, L.L.; Diniz, A.S.A.C.; Maia, C.B.; Viana, M.M.; Costa, S.C.; Brito, P.P., et al.: Fundamental studies of adhesion of dust to PV module surfaces: chemical and physical relationships at the microscale. IEEE J. Photovolt. 6, 719–729 (2016). https://doi.org/10.1109/JPHOTOV.2016.2528409

    Article  Google Scholar 

  57. Horenstein, M.N.; Mazumder, M.K.; Sumner, R.C.; Stark, J.; Abuhamed, T.; Boxman, R.: Modeling of trajectories in an electrodynamic screen for obtaining maximum particle removal efficiency. IEEE Trans. Ind. Appl. 49, 707–713 (2013). https://doi.org/10.1109/TIA.2013.2244192

    Article  Google Scholar 

  58. Seifpanah Sowmehesaraee, M.; Ranjbar, M.; Abedi, M.: Fabrication of lead iodide perovskite solar cells by incorporating cr-substituted and pristine Ba2In2O5•(H2O)x as additives. Prog. Color Color. Coatings 16(1), 21–29 (2023). https://doi.org/10.30509/pccc.2022.166906.1137

    Article  CAS  Google Scholar 

  59. Yilbas, B.S.; Ali, H.; Al-Aqeeli, N.; Khaled, M.M.; Said, S.; Abu-Dheir, N., et al.: Characterization of environmental dust in the dammam area and mud after-effects on bisphenol-a polycarbonate sheets. Sci. Rep. 6, 1–14 (2016). https://doi.org/10.1038/srep24308

    Article  CAS  Google Scholar 

  60. Engelbrecht, J.P.; McDonald, E.V.; Gillies, J.A.; Jayanty, R.K.M.; Casuccio, G.; Gertler, A.W.: Characterizing mineral dusts and other aerosols from the Middle East—part 2: grab samples and re-suspensions. Inhal. Toxicol. 21, 327–336 (2009). https://doi.org/10.1080/08958370802464299

    Article  CAS  PubMed  Google Scholar 

  61. Yilbas, B.S.; Ali, H.; Khaled, M.M.; Al-Aqeeli, N.; Abu-Dheir, N.; Varanasi, K.K.: Influence of dust and mud on the optical, chemical, and mechanical properties of a PV protective glass. Sci. Rep. 5, 1–12 (2015). https://doi.org/10.1038/srep15833

    Article  CAS  Google Scholar 

  62. Aïssa, B.; Isaifan, R.J.; Madhavan, V.E.; Abdallah, A.A.: Structural and physical properties of the dust particles in Qatar and their influence on the PV panel performance. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep31467

    Article  CAS  Google Scholar 

  63. Javed, W.; Wubulikasimu, Y.; Figgis, B.; Guo, B.: Characterization of dust accumulated on photovoltaic panels in Doha. Qatar. Sol. Energy 142, 123–135 (2017). https://doi.org/10.1016/j.solener.2016.11.053

    Article  CAS  ADS  Google Scholar 

  64. Kumar, A.; Rizwan, M.; Nangia, U.: A hybrid intelligent approach for solar photovoltaic power forecasting: impact of aerosol data. Arab. J. Sci. Eng. 45, 1715–1732 (2020). https://doi.org/10.1007/s13369-019-04183-0

    Article  Google Scholar 

  65. Member, S.: Estimation of an optimal PV panel cleaning strategy based on both annual radiation profile and module degradation. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.2983322

    Article  Google Scholar 

  66. Calle, C.I.; Mcfall, J.L.; Buhler, C.R.; Snyder, S.J.; Arens, E.E.: Dust particle removal by electrostatic and dielectrophoretic forces with applications to NASA exploration missions. (2008)

  67. Kazem, A.A.; Chaichan, M.T.; Kazem, H.A.: Dust effect on photovoltaic utilization in Iraq: review article. Renew. Sustain. Energy Rev. 37, 734–749 (2014). https://doi.org/10.1016/j.rser.2014.05.073

    Article  Google Scholar 

  68. Jaiganesh, K.; Reddy, K.B.S.; Shobhitha, B.K.D.; Goud, B.D.: Enhancing the efficiency of rooftop solar photovoltaic panel with simple cleaning mechanism. Mater. Today Proc. 51, 411–415 (2022). https://doi.org/10.1016/j.matpr.2021.05.565

    Article  CAS  Google Scholar 

  69. Jones, R.K.; Baras, A.; Saeeri, A.A.; Qahtani, A.A.; Al, A.O.; Amoudi, Y.A.; Shaya, M.A.; Al-Hsaien, S.A.: Optimized cleaning cost and schedule based on observed soiling conditions for photovoltaic plants in central Saudi Arabia. IEEE J. Photovolt. 6(3), 730–738 (2016). https://doi.org/10.1109/JPHOTOV.2016.2535308

    Article  Google Scholar 

  70. Farrokhi Derakhshandeh, J.; AlLuqman, R.; Mohammad, S.; AlHussain, H.; AlHendi, G.; AlEid, D., et al.: A comprehensive review of automatic cleaning systems of solar panels. Sustain. Energy Technol. Assess. 47, 101518 (2021). https://doi.org/10.1016/j.seta.2021.101518

    Article  Google Scholar 

  71. Hudedmani, M.G.; Gita Joshi, R.M.; Umayal, A.R.: A comparative study of dust cleaning methods for the solar PV panels. Adv. J. Grad. Res. 1(1), 24–29 (2017). https://doi.org/10.21467/ajgr.1.1.24-29

    Article  Google Scholar 

  72. Al Shehri, A.; Parrott, B.; Carrasco, P.; Al Saiari, H.; Taie, I.: Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications. Sol. Energy 135, 317–324 (2016). https://doi.org/10.1016/j.solener.2016.06.005

    Article  CAS  ADS  Google Scholar 

  73. Figgis, B.; Bermudez, V.: PV coating abrasion by cleaning machines in desert environments – measurement techniques and test conditions. Sol. Energy 225, 252–258 (2021). https://doi.org/10.1016/j.solener.2021.07.039

    Article  ADS  Google Scholar 

  74. Greentumble.: Solar panel maintenance and cleaning 2017. https://greentumble.com/solar-panel-maintenance-and-cleaning/ (2017)

  75. Elnozahy, A.; Abdel, A.K.; Hamza, A.; Ali, H.; Abdel-salam, M.; Ookawara, S.: Performance of a PV module integrated with standalone building in hot arid areas as enhanced by surface cooling and cleaning. Energy Build. 88, 100–109 (2015). https://doi.org/10.1016/j.enbuild.2014.12.012

    Article  Google Scholar 

  76. Lathrop, O.: Why should you consider solar panel cleaning? https://www.homeandgardenwithdonna.com/why-should-you-consider-solar-panel-cleaning.html. (2019)

  77. PV Magazine—Photovoltaics Markets and Technology n.d.: https://www.pv-magazine-india.com/2020/05/19/water-scarcity-and-the-growing-need-for-smarter-solutions-in-solar-projects/

  78. Birmann, K.: in 25th European photovoltaic solar energy conference and exhibition/5th world conference on photovoltaic energy conversion, Valencia, Spain. Sol Energy. 6–10 Sept 2010

  79. Yilbas, B.S.; Al-Qahtani, H.; Al-Sharafi, A.; Bahattab, S.; Hassan, G.; Al-Aqeeli, N., et al.: Environmental dust particles repelling from a hydrophobic surface under electrostatic influence. Sci. Rep. 9, 1–18 (2019). https://doi.org/10.1038/s41598-019-44992-9

    Article  CAS  Google Scholar 

  80. Kawamoto, H.; Shibata, T.: Electrostatic cleaning system for removal of sand from solar panels. J. Electrostat. 73, 65–70 (2015). https://doi.org/10.1016/j.elstat.2014.10.011

    Article  Google Scholar 

  81. Biris, A.S.; Saini, D.; Srirama, P.K.; Mazumder, M.K.; Sims, R.A.; Calle, C.I.; et al. Electrodynamic removal of contaminant particles and its applications. pp. 1283–1286. (2004)

  82. Chesnutt, J.K.W.; Ashkanani, H.; Guo, B.; Wu, C.Y.: Simulation of microscale particle interactions for optimization of an electrodynamic dust shield to clean desert dust from solar panels. Sol. Energy 155, 1197–1207 (2017). https://doi.org/10.1016/j.solener.2017.07.064

    Article  ADS  Google Scholar 

  83. Garg, H.P.: Effect of dirt on transparent covers in flat-plate solar energy collectors. Sol. Energy 15, 299–302 (1974)

    Article  ADS  Google Scholar 

  84. Faes, A.; Petri, D.; Champliaud, J.; Geissbühler, J.; Badel, N.; Levrat, J., et al.: Field test and electrode optimization of electrodynamic cleaning systems for solar panels. Prog. Photovolt. Res. Appl. 27, 1020–1033 (2019). https://doi.org/10.1002/pip.3176

    Article  CAS  Google Scholar 

  85. Assi, A.; Hassan, A.; Al-Shamisi, M.; Hejase, H.: Removal of air blown dust from photovoltaic arrays using forced air flow of return air from air conditioning systems. in 2012 international conference renewable energies developed countries (REDEC) (2012) https://doi.org/10.1109/REDEC.2012.6416699

  86. Alqatari, S.; Alfaris, A.; de Weck, O.L.: Cost and performance comparative model of dust mitigation technologies for solar PV in Saudi Arabia. Int. Sci. J. Environ. Sci. 4, 1–7 (2015)

    Google Scholar 

  87. He, G.; Zhou, C.; Li, Z.: Review of self-cleaning method for solar cell array. Procedia Eng. 16, 640–645 (2011). https://doi.org/10.1016/j.proeng.2011.08.1135

    Article  Google Scholar 

  88. Syafiq, A.; Pandey, A.K.; Adzman, N.N.; Abd Rahim, N.: Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol. Energy 162, 597–619 (2018). https://doi.org/10.1016/j.solener.2017.12.023

    Article  ADS  Google Scholar 

  89. Qian, D.; Marshall, J.S.; Frolik, J.: Control analysis for solar panel dust mitigation using an electric curtain. Renew. Energy 41, 134–144 (2012). https://doi.org/10.1016/j.renene.2011.10.014

    Article  Google Scholar 

  90. Muller Solar.: Cleaning solar panel has never been easier 2020. https://mullersolar.com/. (2020)

  91. Hycleaner.: Hycleaner solar robot 2023. https://hycleaner.eu/en/products/. (2023)

  92. Gupta, V.; Sharma, M.; Pachauri, R.K.; Dinesh Babu, K.N.: Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques. Sol. Energy 191, 596–622 (2019). https://doi.org/10.1016/j.solener.2019.08.079

    Article  ADS  Google Scholar 

  93. Paudyal, B.R.; Shakya, S.R.: Dust accumulation effects on efficiency of solar PV modules for off grid purpose: a case study of Kathmandu. Sol. Energy 135, 103–110 (2016). https://doi.org/10.1016/j.solener.2016.05.046

    Article  ADS  Google Scholar 

  94. Cuddihy, E.: Theoratical consideration of soil retention. Sol. Energy Mater. 3, 21–33 (1980)

    Article  CAS  ADS  Google Scholar 

  95. Figgis, B.; Guo, B.; Javed, W.; Ahzi, S.; Rémond, Y.: Dominant environmental parameters for dust deposition and resuspension in desert climates. Aerosol Sci. Technol. 52(7), 788–798 (2018). https://doi.org/10.1080/02786826.2018.1462473

    Article  CAS  ADS  Google Scholar 

  96. Jiang, Y.; Lu, L.; Ferro, A.R.; Ahmadi, G.: Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces. Sol. Energy 159, 1031–1036 (2018). https://doi.org/10.1016/j.solener.2017.08.083

    Article  ADS  Google Scholar 

  97. Ahmed, N.; Zhang, X.; Fahad, S.; Jamil, M.I.; Aziz, T.; Husamelden, E., et al.: Silsesquioxanes-based nanolubricant additives with high thermal stability, superhydrophobicity, and self-cleaning properties. Arab J. Sci. Eng. 46, 6207–6217 (2021). https://doi.org/10.1007/s13369-020-04897-6

    Article  CAS  Google Scholar 

  98. Syafiq, A.; Balakrishnan, V.; Ali, M.S.; Dhoble, S.J.; Rahim, N.A.; Omar, A., et al.: Application of transparent self-cleaning coating for photovoltaic panel: a review. Curr. Opin. Chem. Eng. 36, 100801 (2022). https://doi.org/10.1016/j.coche.2022.100801

    Article  Google Scholar 

  99. Yilbaz, B.S.; Al-Sharafi, A.: Self-Cleaning of Surfaces and Water Droplet Mobility. Elsevier, Netherlands (2019)

    Google Scholar 

  100. Yilbas, B.S.; Al-Sharafi, A.; Ali, H.; Al-Aqeeli, N.; Al-Qahtani, H.; Al-Sulaiman, F.; Abu-Dheir, N.; Abdelmagid, G.; Elkhazraji, A.: Environmental dust removal from inclined hydrophobic glass surface: avalanche influence on dynamics of dust particles. RSC Adv. 8(59), 33775–33785 (2018). https://doi.org/10.1039/C8RA07503D

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Hassan, G.; Yilbas, B.S.; Al-Sharafi, A.; Al-Qahtani, H.: Self-cleaning of a hydrophobic surface by a rolling water droplet. Sci. Rep. 9, 1–14 (2019). https://doi.org/10.1038/s41598-019-42318-3

    Article  CAS  Google Scholar 

  102. Hossain, M.I.; Ali, A.; Bermudez Benito, V.; Figgis, B.; Aïssa, B.: Anti-soiling coatings for enhancement of PV panel performance in desert environment: a critical review and market overview. Materials (Basel) (2022). https://doi.org/10.3390/ma15207139

    Article  PubMed  PubMed Central  Google Scholar 

  103. Self-cleaning solar panels maximize energy efficiency 2012. https://www.asme.org/topics-resources/content/self-cleaning-solar-panels-maximize-efficiency. (2012)

  104. Report, F.; Botham, R.A.; Jenkins, G.H.: US Department of Energy. 89, 10–22. (2015)

  105. Checco, A.; Rahman, A.T.; Black, C.R.: Super hydrophobicity in large-area nanostructured surfaces Defi NED by block-copolymer self assembly (n.d.)

  106. Midtdal, K.; Jelle, B.P.: Self-cleaning glazing products: a state-of-the-art review and future research pathways. Sol. Energy Mater. Sol. Cells 109, 126–141 (2013). https://doi.org/10.1016/j.solmat.2012.09.034

    Article  CAS  Google Scholar 

  107. Ishizaki, T.; Masuda, Y.; Sakamoto, M.: Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution. Langmuir 27, 4780–4788 (2011). https://doi.org/10.1021/la2002783

    Article  CAS  PubMed  Google Scholar 

  108. Kota, A.K.; Kwon, G.; Tuteja, A.: The design and applications of superomniphobic surfaces. NPG Asia Mater 6, e109–e116 (2014). https://doi.org/10.1038/am.2014.34

    Article  CAS  Google Scholar 

  109. Nishimoto, S.; Bhushan, B.: Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv. 3, 671–690 (2013). https://doi.org/10.1039/c2ra21260a

    Article  CAS  ADS  Google Scholar 

  110. Crawford, M.: Superhydrophilic and superwetting surfaces: definition and mechanisms of control. Langmuir 26, 18621–18623 (2010). https://doi.org/10.1021/la1039893

    Article  CAS  Google Scholar 

  111. Verma, L.K.; Sakhuja, M.; Son, J.; Danner, A.J.; Yang, H.; Zeng, H.C., et al.: Self-cleaning and antire fl ective packaging glass for solar modules. Renew. Energy 36, 2489–2493 (2011). https://doi.org/10.1016/j.renene.2011.02.017

    Article  CAS  Google Scholar 

  112. Graziani, L.; Quagliarini, E.; Bondioli, F.; Orazio, M.D.: Durability of self-cleaning TiO2 coatings on fi red clay brick façades: effects of UV exposure and wet & dry cycles. Build. Environ. 71, 193–203 (2014). https://doi.org/10.1016/j.buildenv.2013.10.005

    Article  Google Scholar 

  113. Mazumder, M.K.; Horenstein, M.N.; Sayyah, A.; Stark, J.W.; Bernard, A.; Garner, S.; et al.: Mitigation of dust impacts on solar collectors by water-free cleaning with transparent electrodynamic films: Progress and challenges. in 2017 IEEE 44th Photovoltaic Specialist Conference PVSC, vol. 2017 pp. 2897–901(2017) https://doi.org/10.1109/PVSC.2017.8366463

  114. Al-Housani, M.; Bicer, Y.; Koç, M.: Experimental investigations on PV cleaning of large-scale solar power plants in desert climates: Comparison of cleaning techniques for drone retrofitting. Energy Convers. Manag. 185, 800–815 (2019). https://doi.org/10.1016/j.enconman.2019.01.058

    Article  Google Scholar 

  115. Adak, D.; Bhattacharyya, R.; Barshilia, H.C.: A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices. Renew. Sustain. Energy Rev. (2022). https://doi.org/10.1016/j.rser.2022.112145

    Article  Google Scholar 

  116. Şevik, S.; Aktaş, A.: Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays. Renew. Energy 181, 490–503 (2022). https://doi.org/10.1016/j.renene.2021.09.064

    Article  Google Scholar 

  117. Deb, D.; Brahmbhatt, N.L.: Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution. Renew. Sustain. Energy Rev. 82, 3306–3313 (2018). https://doi.org/10.1016/j.rser.2017.10.014

    Article  Google Scholar 

  118. Patil, P.A.; Bagi, J.S.; Wagh, M.M.: A review on cleaning mechanism of solar photovoltaic panel. in 2017 International Conference on Energy, Communication Data Analytics and Soft Computing ICECDS, vol. 2018. pp. 250–256 (2017) https://doi.org/10.1109/ICECDS.2017.8389895

  119. Tejwani, R.; Solanki, C.S.: 360° sun tracking with automated cleaning system for solar PV modules. in Conference Record of the IEEE Photovoltatic Specialists Conference, pp. 2895–2898. (2010) https://doi.org/10.1109/PVSC.2010.5614475

  120. Azouzoute, A.; Zitouni, H.; El Ydrissi, M.; Hajjaj, C.; Garoum, M.; Bennouna, E.G., et al.: Developing a cleaning strategy for hybrid solar plants PV/CSP: case study for semi-arid climate. Energy (2021). https://doi.org/10.1016/j.energy.2021.120565

    Article  Google Scholar 

  121. Fan, S.; Liang, W.; Wang, G.; Zhang, Y.; Cao, S.: A novel water-free cleaning robot for dust removal from distributed photovoltaic (PV) in water-scarce areas. Sol. Energy 241, 553–563 (2022). https://doi.org/10.1016/j.solener.2022.06.024

    Article  ADS  Google Scholar 

  122. Smith, M.K.; Wamser, C.C.; James, K.E.; Moody, S.; Sailor, D.J.; Rosenstiel, T.N.: Effects of natural and manual cleaning on photovoltaic output. J. Sol. Energy Eng. Trans. ASME 135, 1–4 (2013). https://doi.org/10.1115/1.4023927

    Article  CAS  Google Scholar 

  123. King, M.; Li, D.; Dooner, M.; Ghosh, S.; Nath Roy, J.; Chakraborty, C., et al.: Mathematical modelling of a system for solar PV efficiency improvement using compressed air for panel cleaning and cooling. Energies (2021). https://doi.org/10.3390/en14144072

    Article  Google Scholar 

  124. Parrott, B.; Carrasco Zanini, P.; Shehri, A.; Kotsovos, K.; Gereige, I.: Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Sol. Energy 171, 526–533 (2018). https://doi.org/10.1016/j.solener.2018.06.104

    Article  CAS  ADS  Google Scholar 

  125. Ullah, A.; Amin, A.; Haider, T.; Saleem, M.; Butt, N.Z.: Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore Pakistan. Renew. Energy 150, 456–468 (2020). https://doi.org/10.1016/j.renene.2019.12.090

    Article  CAS  Google Scholar 

  126. Al-Badra, M.Z.; Abd-Elhady, M.S.; Kandil, H.A.: A novel technique for cleaning PV panels using antistatic coating with a mechanical vibrator. Energy Rep. 6, 1633–1637 (2020). https://doi.org/10.1016/j.egyr.2020.06.020

    Article  Google Scholar 

  127. Khan, M.U.; Abbas, M.; Khan, M.M.; Kousar, A.; Alam, M.; Massoud, Y., et al.: Modeling and design of low-cost automatic self cleaning mechanism for standalone micro PV systems. Sustain Energy Technol. Assess. 43, 1–10 (2021). https://doi.org/10.1016/j.seta.2020.100922

    Article  Google Scholar 

  128. Alnaser, N.W.; Al Othman, M.J.; Dakhel, A.A.; Batarseh, I.; Lee, J.K.; Najmaii, S., et al.: Comparison between performance of man-made and naturally cleaned PV panels in a middle of a desert. Renew. Sustain. Energy Rev. 82, 1048–1055 (2018). https://doi.org/10.1016/j.rser.2017.09.058

    Article  Google Scholar 

  129. Conceição, R.; Vázquez, I.; Fialho, L.; García, D.: Soiling and rainfall effect on PV technology in rural Southern Europe. Renew. Energy 156, 743–747 (2020). https://doi.org/10.1016/j.renene.2020.04.119

    Article  Google Scholar 

  130. Abass, K.I.; Radhi, A.A.; Mahdy, A.M.J.: Using water and surfactants in cleaning PV modules effect on its yield. Int. J. Trend. Res. Dev. 7, 2394–9333 (2020)

    Google Scholar 

  131. Jaradat, M.A.: A fully portable robot system for cleaning solar panels. vol. 151 pp. 10–7 (2015)

  132. Guo, B.; Javed, W.; Khoo, Y.S.; Figgis, B.: Solar PV soiling mitigation by electrodynamic dust shield in field conditions. Sol. Energy 188, 271–277 (2019). https://doi.org/10.1016/j.solener.2019.05.071

    Article  ADS  Google Scholar 

  133. Moharram, K.A.; Abd-Elhady, M.S.; Kandil, H.A.; El-Sherif, H.: Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energy Convers. Manag. 68, 266–272 (2013). https://doi.org/10.1016/j.enconman.2013.01.022

    Article  Google Scholar 

  134. Javed, W.; Khoo, Y.S.; Figgis, B.; Guo, B.: Field evaluation of two types of EDS-integrated PV modules with different configurations and surface properties. Sol. Energy 241, 515–524 (2022). https://doi.org/10.1016/j.solener.2022.06.035

    Article  ADS  Google Scholar 

  135. Bock, J.P.; Robison, J.R.; Sharma, R.; Zhang, J.; Mazumder, M.K.: An efficient power management approach for self-cleaning solar panels with integrated electrodynamic screens. in Proceedings ESA annual meeting on electrostatics paper, pp.1 –6 (2008)

  136. Alibaba.: https://www.alibaba.com/trade/search?fsb=y&IndexArea=product_en&CatId=&tab=all&SearchText=brush+for+pv+cleaning (2023)

  137. Tools, A.: Big red, high pressure washer 2000 W. https://albawarditools.com/product/high-pressure-washer-try3-2-0s-2000w/?gclid=CjwKCAiArY2fBhB9EiwAWqHK6nBb7EJcwzT__eimDjNdL6UEIbk7mqXnMTC4FwnIeoTKzQurIb3ibhoCMhEQAvD_BwE. (2023)

  138. Baras, A.; Jones, R.K.; Alqahtani, A.; Alodan, M.; Abdullah, K.: Measured soiling loss and its economic impact for PV plants in central Saudi Arabia. in 2016 Saudi Arab Smart Grid Conference SASG, vol. 2017 pp. 1–7 (2016) https://doi.org/10.1109/SASG.2016.7849657

  139. Chowdhury, R.; Aowal, M.A.; Mostafa, S.M.G.; Rahman, M.A.: Floating Solar Photovoltaic System: An Overview and their Feasibility at Kaptai in Rangamati. in 2020 IEEE International Power Renewable Energy Conference (IPRECON). (2020) https://doi.org/10.1109/IPRECON49514.2020.9315200

  140. USA Electricity Prices: https://www.globalpetrolprices.com/USA/electricity_prices/#:~:text=USA%2C June 2022%3A The price,of power%2C distribution and taxes (2023)

  141. Alibaba.: https://www.alibaba.com/trade/searchfsb=y&IndexArea=product_en&CatId=&tab=all&SearchText=hvac+duct (2023)

  142. Zhao, B.; Zhang, S.; Cao, S.; Zhao, Q.: Cleaning cycle optimization and cost evaluation of module dust for photovoltaic power plants in China. Clean Technol. Environ. Policy 21, 1645–1654 (2019). https://doi.org/10.1007/s10098-019-01731-y

    Article  Google Scholar 

  143. Dawson, C.: Solar farm cleaning costs 2023. https://soilar.tech/solar-farm-cleaning-costs/. (2023)

  144. Indiamart.: Solar Panels—Super hydrophobic coating one kit good For 50 panel 2023. https://www.indiamart.com/proddetail/solar-panels-super-hydrophobic-coating-one-kit-good-for-50-panel-2-mtr-x-1-mtr-22056797862.html. (2023)

  145. Short Curing Time Iota Phps Hydrophilic Super Hard Stain Resistant Nano-Coating Materials for Surface Hardening Coating 2023. https://siliconeoil.en.made-in-china.com/product/emQRFzuHIfWA/China-Short-Curing-Time-Iota-Phps-Hydrophilic-Super-Hard-Stain-Resistant-Nano-Coating-Materials-for-Surface-Hardening-Coating.html. (2023)

  146. Shenouda, R.; Abd-Elhady, M.S.; Kandil, H.A.: A review of dust accumulation on PV panels in the MENA and the Far East regions. J. Eng. Appl. Sci. 69, 1–29 (2022). https://doi.org/10.1186/s44147-021-00052-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Deanship of Scientific Research (DSR), Interdisciplinary Research Center (IRC) for Renewable Energy and Power Systems, King Fahd University of Petroleum and Minerals (KFUPM) through Project# INRE2301, and the funding support provided by the King Abdullah City for Atomic and Renewable Energy (K.A. CARE).

Funding

Funding was provided by King Fahd University of Petroleum and Minerals (Grant Number INRE2301), King Abdullah City for Atomic and Renewable Energy (Grant Number KACO2512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Al-Sharafi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadullah, A.B., Al-Sharafi, A., Hassan, G. et al. A Techno-Economic Review of Dust Accumulation and Cleaning Techniques for Solar Energy Harvesting Devices. Arab J Sci Eng 49, 1343–1365 (2024). https://doi.org/10.1007/s13369-023-08206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08206-9

Keywords

Navigation