Skip to main content

Advertisement

Log in

Hybrid Neural Network and Adaptive Terminal Sliding Mode MPPT Controller for Partially Shaded Standalone PV Systems

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research presents a new method for controlling the maximum power point tracking (MPPT) of solar photovoltaic (PV) systems that are partially shaded. The proposed approach uses a neural network and an adaptive terminal sliding mode controller (NN-ATSMC) to ensure that the PV system operates at optimal performance under uncertain conditions. The NN-ATSMC controller is applied to a DC/DC boost converter to drive the system to the maximum power point (MPP). This method ensures that the error will converge in finite time and the chattering effect will be minimized without losing robustness under various disturbances and load conditions. Simulation results show that the proposed NN-ATSMC controller performs better than other types of controllers existing in the literature, such as a sliding mode controller (SMC) and a conventional proportional-integral controller (CPI). For the validation of the proposed controller, control hardware-in-the-loop (C-HIL) experimental implementation has been carried out through Texas Instruments digital signal processor C2000. The experimental results show the viability of real-time implementation and verify the effectiveness of the proposed method, which ensures the low cost and stability of the standalone PV systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Dornfeld, D.A.: Moving towards green and sustainable manufacturing. Int. J. Precis. Eng. Manuf.-Green Tech. 1, 63–66 (2014). https://doi.org/10.1007/s40684-014-0010-7.

  2. Haq, I.U.; Khan, Q.; Khan, I.; Akmeliawati, R.; Nisar, K.S.; Khan, I.: Maximum power extraction strategy for variable speed wind turbine system via neuro-adaptive generalized global sliding mode controller. IEEE Access 8, 128536–128547 (2020). https://doi.org/10.1109/ACCESS.2020.2966053

    Article  Google Scholar 

  3. Metry, M.; Shadmand, M.B.; Balog, R. S.; Abu-Rub, H.: MPPT of photovoltaic systems using sensorless current-based model predictive control. IEEE Trans. Industry Appl. 53(2), 1157–1167 (2017). https://doi.org/10.1109/TIA.2016.2623283.

  4. Bhatnagar, P.; Nema, R.: Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications. Renew. Sustain. Energy Rev. 23, 224–241 (2013). https://doi.org/10.1016/j.rser.2013.02.011

    Article  Google Scholar 

  5. Chihchiang, H.; Chihming, S.: Study of maximum power tracking techniques and control of DC/DC converters for photovoltaic power system. In: PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), vol.1, pp. 86–93 (1998). https://doi.org/10.1109/PESC.1998.701883.

  6. Et-torabi, K.; Mesbahi, A.: MPPT based artificial neural network versus perturb & observe for photovoltaic energy conversion system. In: The International Conference on Energy and Green Computing, vol. 336, no. 44 (2022).

  7. Cristaldi, L.; Faifer, M.; Rossi, M.; Toscani, S.: An improved model-based maximum power point tracker for photovoltaic panels. IEEE Trans. Instrum. Meas. 63(1), 63–71 (2014). https://doi.org/10.1109/TIM.2013.2277579

    Article  Google Scholar 

  8. Zbeeb, A.; Devabhaktuni, V.; Sebak, A.: Improved photovoltaic MPPT algorithm adapted for unstable atmospheric conditions and partial shading. In: 2009 International Conference on Clean Electrical Power, pp. 320–323 (2009). https://doi.org/10.1109/ICCEP.2009.5212035.

  9. Zafar, M. H.; Khan, N. M.; Mirza, A. F.; Mansoor, M.: Bio-inspired optimization algorithms based maximum power point tracking technique for photovoltaic systems under partial shading and complex partial shading conditions. J. Clean. Prod. 309 (2021).

  10. Kosciuch, K.; Riser-Espinoza, D.; Gerringer, M; Erickson, W.: A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern US. PloS One. 15(4) (2010).

  11. Awais, M.; Khan, L.; Ahmad, S.; Mumtaz, S.; Badar, R.: Nonlinear adaptive NeuroFuzzy feedback linearization based MPPT control schemes for photovoltaic system in microgrid. Plos One. 15(6) (2020).

  12. Daraban, S.; Petreus, D.; Morel, C.: A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading. Energy 74, 374–388 (2014)

    Article  Google Scholar 

  13. Liu, Y.H.; Huang, S.C.; Huang, J.W.; Liang, W.C.: A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions. IEEE Trans. Energy Convers. 27(4), 1027–1035 (2012). https://doi.org/10.1109/TEC.2012.2219533

    Article  Google Scholar 

  14. Baraean, A.; Hamanah, W.M.; Bawazir, A.; Baraean, S.; Abido, M.A.: Optimal nonlinear backstepping controller design of a Quadrotor-Slung load system using particle Swarm Optimization. Alex. Eng. J. 68, 551–560 (2023)

    Article  Google Scholar 

  15. Jiang, L.L.; Maskell, D.L.; Patra, J.C.: A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build. 58, 227–236 (2013)

    Article  Google Scholar 

  16. Hamanah, W.M.; Baraean, A.; Hussein, A.; Abido, M.A.: Stabilizing multimachine power systems with fuzzy logic using artificial bee colonies. Renew. Energy Power Qual. J. 21, 166–171 (2023)

    Article  Google Scholar 

  17. Ullah, S.; Khan, Q.; Mehmood, A.; Kirmani, S.A.; Mechali, O.: Neuro-adaptive fast integral terminal sliding mode control design with variable gain robust exact differentiator for under-actuated quadcopter UAV. ISA Trans. 120, 293–304 (2022)

    Article  Google Scholar 

  18. Liu, Y.H.; Liu, C.L.; Huang, J.W.; Chen, J.H.: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments. Sol. Energy 89, 42–53 (2013)

    Article  Google Scholar 

  19. Kharb, R.K.; Shimi, S.; Chatterji, S.; Ansari, M.F.: Modeling of solar PV module and maximum power point tracking using ANFIS. Renew. Sustain. Energy Rev. 33, 602–612 (2014)

    Article  Google Scholar 

  20. Lee, H. H.; Phuong, L. M.; Dzung, P. Q.; Dan Vu, N. T.; Khoa, L. D.: The new maximum power point tracking algorithm using ANN-based solar PV systems. In: TENCON 2010–2010 IEEE Region 10 Conference, pp. 2179–2184 (2010). https://doi.org/10.1109/TENCON.2010.5686721.

  21. Haq, I.U.; Khan, Q.; Ullah, S.; Khan, S.A.; Akmeliawati, R.; Khan, M.A.; Iqbal, J.: Neural network-based adaptive global sliding mode MPPT controller design for standalone photovoltaic systems. PLoS ONE 17(1), e0260480 (2022)

    Article  Google Scholar 

  22. Dahech, K.; Allouche, M.; Damak, T.; Tadeo, F.: Backstepping sliding mode control for maximum power point tracking of a Photovoltaic system. Electric Power Syst. Res. 143, 182–188 (2017)

    Article  Google Scholar 

  23. Zerroug, N.; Harmas, M.N.; Benaggoune, S.; Bouchama, Z.; Zehar, K.: DSP-based implementation of fast terminal synergetic control for a DC-DC Buck converter. J. Franklin Inst. 355(5), 2329–2343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, R.; Zhang, H.; Yuan, M.; Liang, B.; Li, Y.; Huangfu, Y.: Chattering suppression fast terminal sliding mode control for aircraft EMA braking system. IEEE Trans. Transport. Electrification 7(3), 1901–1914 (2021). https://doi.org/10.1109/TTE.2021.3054510

    Article  Google Scholar 

  25. Kayisli, K.: Super twisting sliding mode-type 2 fuzzy MPPT control of solar PV system with parameter optimization under variable irradiance conditions. Ain Shams Eng. J. 14(1) (2023).

  26. Latreche, S.; Benaggoune, S.: Robust Wheel Slip for Vehicle Ant-lock Braking System with Fuzzy Sliding Mode Control (FSMC). Eng. Technol. Appl. Sci. Res. 10(5), 6368–6373 (2020)

    Article  Google Scholar 

  27. Nguyen, T.L.; Vo, T.H.; Le, N.D.: Backstepping control for induction motors with input and output constraints. Eng. Technol. Appl. Sci. Res. 10(4), 5998–6003 (2020)

    Article  Google Scholar 

  28. Kavya, M.; Jayalalitha, S.: A novel coarse and fine control algorithm to improve maximum power point tracking (MPPT) efficiency in photovoltaic system. ISA Trans. 121, 180–190 (2022)

    Article  Google Scholar 

  29. Kumar, V.; Mitra, A.; Shaklya, O.; Sharma, S.; Rana, K. P. S.: An adaptive robust fuzzy PI controller for maximum power point tracking of photovoltaic system. Optik. 259 (2022).

  30. Charaabi, A.; Zaidi, A.; Barambones, O.; Zanzouri, N.: Implementation of adjustable variable step based backstepping control for the PV power plant. Int. J. Electrical Power Energy Syst. 136 (2022).

  31. Laxman, B.; Annamraju, A.; Srikanth, N.V.: A grey wolf optimized fuzzy logic based MPPT for shaded solar photovoltaic systems in microgrids. Int. J. Hydrogen Energy 46(18), 10653–10665 (2021)

    Article  Google Scholar 

  32. Xinyi, F.; Tao, M.: Solar photovoltaic system under partial shading and perspectives on maximum utilization of the shaded land. Int. J. Green Energy 20(4), 378–389 (2022)

    Google Scholar 

  33. Khanna, R.; Zhang, Q.; Stanchina, W.E.; Reed, G.F.; Mao, Z.H.: Maximum power point tracking using model reference adaptive control. IEEE Trans. Power Electron. 29(3), 1490–1499 (2013)

    Article  Google Scholar 

  34. Gu, W.; Ma, T.; Shen, L.; Li, M.; Zhang, Y.; Zhang, W.: Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions. Energy, 188 (2019).

  35. Taner, T.: Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy 143, 284–294 (2018)

    Article  Google Scholar 

  36. Taner, T.: The novel and innovative design with using H2 fuel of PEM fuel cell: Efficiency of thermodynamic analyze. Fuel 302, 1–11 (2021)

    Article  Google Scholar 

  37. Moreno-Valenzuela, J.; García-Alarcón, O.: On control of a boost DC-DC power converter under constrained input. Complexity. 2017 (2017).

  38. Wai, R.J.; Shih, L.C.: Design of voltage tracking control for DC–DC boost converter via total sliding-mode technique. IEEE Trans. Industr. Electron. 58(6), 2502–2511 (2011)

    Article  Google Scholar 

  39. Zhang, X.; Martinez-Lopez, M.; He, W.; Shang, Y.; Jiang, C.; Moreno-Valenzuela, J.: Sensorless control for DC–DC boost converter via generalized parameter estimation-based observer. Appl. Sci. 11(16) (2021).

  40. Hagan, M.; Demuth, H.; Beale, M.; De Jesús, S.: Neural network design. Pws Pub. vol. 20 (1996).

  41. Chauhan, R.; Singh, S.: Application of neural networks based method for estimation of aerodynamic derivatives. In: 2017 7th International Conference on Cloud Computing, Data Science Engineering-Confluence, pp. 58–64 (2017).

  42. NASA POWER (Prediction of Worldwide Energy Resources), Accessed on 26 March 2022. https://power.larc.nasa.gov.

  43. Haq, I. U.; Khan, Q.; Ullah, S.; Khan, S. A.; Akmeliawati, R.; Khan, M. A.; Iqbal, J.: Neural network-based adaptive global sliding mode MPPT controller design for standalone photovoltaic systems Plos one. 17(1) (2022).

  44. Khalil, H. K.: Nonlinear Systems (3rd Ed.). Prentice Hall, London (2002).

  45. Rosa, A.; Silva, M.; Campos, M.; Santana, R.; Rodrigues, W.; Morais, L.; Seleme, S.: SHIL and DHIL simulations of nonlinear control methods applied for power converters using embedded systems. Electronics 7(10), 241–267 (2018)

    Article  Google Scholar 

  46. Taner, T.: A feasibility study of solar energy-techno economic analysis from Aksaray city, Turkey. J. Thermal Eng. 3(5), 1–1 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS) at the King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Kingdom of Saudi Arabia, through the funded project No. INRE2313. Dr. Abido acknowledges also the KACARE Energy Research and Innovation Center (ERIC), KFUPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Kassas.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraean, A., Kassas, M., Alam, M.S. et al. Hybrid Neural Network and Adaptive Terminal Sliding Mode MPPT Controller for Partially Shaded Standalone PV Systems. Arab J Sci Eng 48, 15527–15539 (2023). https://doi.org/10.1007/s13369-023-08179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08179-9

Keywords

Navigation