Skip to main content

Advertisement

Log in

A Data-Driven-Based Optimal Planning of Renewable Rich Microgrid System

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to favourable economic and environmental concerns, reduced power losses, and technological advancements in data science, large-scale renewable energy sources (RESs) are being inserted into smart microgrids (MGs). Generally, these resources are inserted at the distribution level and feed consumers locally with better reliability. The planning and stable operation of the power networks are complicated at numerous levels as a result of large-scale renewable integration, as the infeed from renewable sources like wind and solar is highly intermittent and uncertain, significantly affecting the resilient, intelligent, and optimal operation of the power system. The creation of scenarios is an essential step in the planning and stable operation of renewable-rich power systems. Scenarios can be generated based on seasonal events to mitigate growing complexity and intermittency. In this paper, time-series solar data is used for forecasting solar irradiance using long-short-term memory (LSTM). Besides, a cost-based optimisation model has been developed by using stochastic programming to obtain both the optimal sizing and optimal switching sequence of distributed units as well as the optimal number of required units. The stochastic nature of solar and load demand is considered in beta (\(\beta \)) distribution. The objective function formulated covers different costs, like capital, operational, and switching costs associated with required units. The running cost incorporated with the capital cost gives us a broader design for planning the MG, thus making it both planning and operational problem. The entire proposed MG planning problem has been developed in a Python and MATLAB ® environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

DG:

Distributed generation

DEG:

Diesel engine generator

ESS:

Energy storage system

LSTM:

Long short-term memory

ML:

Machine learning

NOCT:

Normal optimum cell temperature

OM:

Operation and maintenance

RMSE:

Root mean square error

SR:

Spinning reserve

RES:

Renewable energy sources

s :

Index of generated scenario

T :

Data samples

t :

Index of time span

\(C_\textrm{chr}\)(S,t)\(\backslash D_\textrm{chr}\)(s,t):

Charging\(\backslash \)discharging capacity of BS unit.

\({\text {IC}}_\textrm{spv}\) :

Installation cost of solar photo voltaic

\(X_\textrm{spv}\) :

Rating of solar photo voltaic

\({\text {OM}}_\textrm{SPV}\) :

Operation and maintenance cost

\(N_\textrm{spv}\) :

Total no. of panels

\({\text {IC}}_\textrm{bio}\) :

Installation cost related to biogas

\(X_\textrm{bio}\) :

Rating of biogas

\(N_\textrm{DEG}\) :

Number of diesel generators

\(N_\textrm{batt}\) :

Number of batteries

\({\text {CE}}_\textrm{tax}\) :

Carbon emission tax

\(T_\textrm{spv}\) :

Cell temperature

\(X_\textrm{batt}\) :

Battery rating

\(C_{d,\textrm{run}}\) :

Daily running cost

\({\text {SR}}_\textrm{min}\) :

Minimum spinning reserve

References

  1. Ahmed, S.D.; Al-Ismail, F.S.M.; Shafiullah, M.; Al-Sulaiman, F.A.; El-Amin, I.M.: Grid integration challenges of renewable energy: a review. IEEE Access 8, 10857–10878 (2020)

    Article  Google Scholar 

  2. Sun, M.; Teng, F.; Konstantelos, I.; Strbac, G.: An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources. Energy 145, 871–885 (2018)

    Article  Google Scholar 

  3. Xie, H.; Zheng, S.; Ni, M.: Microgrid development in china: a method for renewable energy and energy storage capacity configuration in a megawatt-level isolated microgrid. IEEE Electr. Mag. 5(2), 28–35 (2017)

    Article  Google Scholar 

  4. Solanki, B.V.; Bhattacharya, K.; Ca nizares, C.A.: A sustainable energy management system for isolated microgrids. IEEE Trans. Sustain. Energy 8(4), 1507–1517 (2017)

    Article  Google Scholar 

  5. [Online]. Available: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

  6. Rehman, N.; Mufti, M.; Gupta, N.: Steady state analysis of distribution system with wind and solar under various electric vehicle load models. In: 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON). IEEE, pp. 1–6 (2021)

  7. Rehman, N.; Gupta, N., et al.: Optimal location of electric vehicles in a wind integrated distribution system using reptile search algorithm. Distrib. Gener. Altern. Energy J. 141–168 (2023)

  8. Rehman, N.; Mufti, M.-U.D.; Gupta, N.: Metaheuristic method for a wind-integrated distribution network to support voltage stabilisation employing electric vehicle loads. Appl. Sci. 13(4), 2254 (2023)

    Article  Google Scholar 

  9. Hart, E.K.; Jacobson, M.Z.: A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables. Renew. Energy 36(8), 2278–2286 (2011)

    Article  Google Scholar 

  10. Kumar, M.; Tyagi, B.: An optimal multivariable constrained nonlinear (mvcnl) stochastic microgrid planning and operation problem with renewable penetration. IEEE Syst. J. 14(3), 4143–4154 (2020)

    Article  Google Scholar 

  11. Ahmed, W.; Ansari, H.; Khan, B.; Ullah, Z.; Ali, S.M.; Mehmood, C.A.A.; Qureshi, M.B.; Hussain, I.; Jawad, M.; Khan, M.U.S.; et al.: Machine learning based energy management model for smart grid and renewable energy districts. IEEE Access 8, 185059–185078 (2020)

    Article  Google Scholar 

  12. Ali, E.; Abd Elazim, S.; Abdelaziz, A.: Optimal allocation and sizing of renewable distributed generation using ant lion optimization algorithm. Electr. Eng. 100, 99–109 (2018)

    Article  Google Scholar 

  13. Hafez, O.; Bhattacharya, K.: Optimal planning and design of a renewable energy based supply system for microgrids. Renew. Energy 45, 7–15 (2012)

    Article  Google Scholar 

  14. Duchesne, L.; Karangelos, E.; Wehenkel, L.: Recent developments in machine learning for energy systems reliability management. Proc. IEEE 108(9), 1656–1676 (2020)

    Article  Google Scholar 

  15. Jiayi, H.; Chuanwen, J.; Rong, X.: A review on distributed energy resources and microgrid. Renew. Sustain. Energy Rev. 12(9), 2472–2483 (2008)

    Article  Google Scholar 

  16. Ahmed, W.; Ansari, H.; Khan, B.; Ullah, Z.; Ali, S.M.; Mehmood, C.A.A.; Qureshi, M.B.; Hussain, I.; Jawad, M.; Khan, M.U.S.; et al.: Machine learning based energy management model for smart grid and renewable energy districts. IEEE Access 8, 185 059-185 078 (2020)

    Article  Google Scholar 

  17. Chen, X.; Wu, W.; Zhang, B.; Lin, C.: Data-driven dg capacity assessment method for active distribution networks. IEEE Trans. Power Syst. 32(5), 3946–3957 (2016)

    Article  Google Scholar 

  18. Jabbari-Sabet, R.; Moghaddas-Tafreshi, S.-M.; Mirhoseini, S.-S.: Microgrid operation and management using probabilistic reconfiguration and unit commitment. Int. J. Electr. Power Energy Syst. 75, 328–336 (2016)

    Article  Google Scholar 

  19. Rigo-Mariani, R.; Sareni, B.; Roboam, X.: Integrated optimal design of a smart microgrid with storage. IEEE Trans. Smart Grid 8(4), 1762–1770 (2015)

    Article  Google Scholar 

  20. Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N.: Machine-learning methods for integrated renewable power generation: a comparative study of artificial neural networks, support vector regression, and gaussian process regression. Renew. Sustain. Energy Rev. 108, 513–538 (2019)

    Article  Google Scholar 

  21. Li, Y.; Yang, Z.; Zhao, D.; Lei, H.; Cui, B.; Li, S.: Incorporating energy storage and user experience in isolated microgrid dispatch using a multi-objective model. IET Renew. Power Gener. 13(6), 973–981 (2019)

    Article  Google Scholar 

  22. Shishkov, E.; Pronichev, A.; Soldusova, E.: Microgrid energy management system for reducing required power reserves, pp. 1–4 (2019).

  23. Giraldo, J.S.; Castrillon, J.A.; Lopez, J.C.; Rider, M.J.; Castro, C.A.: Microgrids energy management using robust convex programming. IEEE Trans. Smart Grid 10(4), 4520–4530 (2018)

    Article  Google Scholar 

  24. Xie, R.; Chen, Y.; Li, F.; Wang, Z.; Mei, S.: Operationally constrained optimal dispatch of multiple pulsed loads in an isolated microgrid, pp. 1–5 (2018)

  25. Nejabatkhah, F.; Li, Y.W.; Nassif, A.B.; Kang, T.: Optimal design and operation of a remote hybrid microgrid. CPSS Trans. Power Electron. Appl. 3(1), 3–13 (2018)

    Article  Google Scholar 

  26. Hart, E.K.; Jacobson, M.Z.: A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables. Renew. Energy 36(8), 2278–2286 (2011)

    Article  Google Scholar 

  27. Pannala, S.; Patari, N.; Srivastava, A.K.; Padhy, N.P.: Effective control and management scheme for isolated and grid connected dc microgrid. IEEE Trans. Ind. Appl. 56(6), 6767–6780 (2020)

  28. Liu, P.; Cai, Z.; Xie, P.; Li, X.; Zhang, Y.: A decomposition-coordination planning method for flexible generation resources in isolated microgrids. IEEE Access 7, 76 720-76 730 (2019)

    Article  Google Scholar 

  29. Bani-Ahmed, A.; Rashidi, M.; Nasiri, A.; Hosseini, H.: Reliability analysis of a decentralized microgrid control architecture. IEEE Trans. Smart Grid 10(4), 3910–3918 (2018)

    Article  Google Scholar 

  30. Guo, Y.; Zhao, C.: Islanding-aware robust energy management for microgrids. IEEE Trans. Smart Grid 9(2), 1301–1309 (2016)

    Article  Google Scholar 

  31. Sengupta, M.; Xie, Y.; Lopez, A.; Habte, A.; Maclaurin, G.; Shelby, J.: The national solar radiation data base (nsrdb). Renew. Sustain. Energy Rev. 89, 51–60 (2018)

    Article  Google Scholar 

  32. Narayan, A.; Ponnambalam, K.: Risk-averse stochastic programming approach for microgrid planning under uncertainty. Renew. Energy 101, 399–408 (2017)

    Article  Google Scholar 

  33. [Online]. Available: https://www.nrel.gov

  34. Wang, K.; Qi, X.; Liu, H.; Song, J.: Deep belief network based k-means cluster approach for short-term renewable power forecasting. Energy 165, 840–852 (2018)

    Article  Google Scholar 

  35. Jung, J.; Broadwater, R.P.: Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 31, 762–777 (2014)

    Article  Google Scholar 

  36. Wang, H.; Huang, J.: Joint investment and operation of microgrid. IEEE Trans. Smart Grid 8(2), 833–845 (2015)

    Google Scholar 

  37. Johansen, T.A.; Fossen, T.I.; Berge, S.P.: Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming. IEEE Trans. Control Syst. Technol. 12(1), 211–216 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad Ahangar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahangar, P.A., Lone, S.A. & Gupta, N. A Data-Driven-Based Optimal Planning of Renewable Rich Microgrid System. Arab J Sci Eng 49, 6241–6257 (2024). https://doi.org/10.1007/s13369-023-08153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08153-5

Keywords

Navigation