Skip to main content
Log in

Investigation of Self-healing and Mechanical Properties of Asphalt Mixtures Prepared with SBS and Waste Metal

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The impact of induction heating on the self-healing of asphalt mixture test specimens prepared with scrap metal and styrene–butadiene–styrene (SBS) modified bitumen was investigated in this study. In addition, the effects of waste metals used instead of aggregates in asphalt mixtures on the asphalt mixtures’ mechanical properties were determined. To this end, asphalt mixtures were prepared to use two different percentages (inst aggregates of 50% and 100% aggregates) of waste metal in two different mill scale (cold mill scale and hot mill scale) and SBS in two different percentages (2% and 3%) to create prismatic and Marshall asphalt test specimens. Induction heating systems were used to determine self-healing properties. The samples were heated in five different heating times as 120 s, 100 s, 80 s, 60 s, and 40 s. To measure the performance of the recovery processing, five recovery cycles were performed for every asphalt sample. According to the results, the hardness of the mixtures, the mixes’ fatigue life and load repetitions both shorten as the waste metal usage ratio in the asphalt mixtures increases. As both the amount of sludge and the amount of SBS in the asphalt mixtures increase, the maximum temperatures of the asphalt mixtures also increase. When the SBS ratio in the asphalt mixtures increases, the recovery rates increase. In addition, as the waste metal content in the asphalt mixture increases, an increase in HL values is observed. Finally, the general binding and rheological properties of SBS modified binders were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable requests.

References

  1. Read, J.; Whiteoak, D.: The Shell Bitumen Handbook. Shell UK oil (2003)

    Google Scholar 

  2. Thom, N.: Principles of Pavement Engineering. ICE Publishing (2013)

    Book  Google Scholar 

  3. Pearson, D.: Deterioration and Maintenance of Pavements. ICE Publishing (2012)

    Google Scholar 

  4. Grossegger, D.; Garcia, A.: Influence of the thermal expansion of bitumen on asphalt self-healing. Appl. Therm. Eng. 156, 23–33 (2019). https://doi.org/10.1016/j.applthermaleng.2019.04.034

    Article  Google Scholar 

  5. Grossegger, D.; Gomez-Meijide, B.; Vansteenkiste, S.; Garcia, A.: Influence of rheological and physical bitumen properties on heat-induced self-healing of asphalt mastic beams. Constr. Build. Mater. 182, 298–308 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.148

    Article  Google Scholar 

  6. Garcia, A.; Schlangen, E.; Van de Ven, M.: Two ways of closing cracks on asphalt concrete pavements: microcapsules and induction heating. Key Eng. Mater. 417–418, 573–576 (2009). https://doi.org/10.4028/www.scientific.net/KEM.417-418.573

    Article  Google Scholar 

  7. Ajam, H.; Lastra-González, P.; Gómez-Meijide, B.; Airey, G.; Garcia, A.: Self-healing of dense asphalt concrete by two different approaches: electromagnetic induction and infrared radiation. J. Test. Eval. 45, 20160612 (2017). https://doi.org/10.1520/JTE20160612

    Article  Google Scholar 

  8. Gómez-Meijide, B.; Ajam, H.; Lastra-González, P.; Garcia, A.: Effect of air voids content on asphalt self-healing via induction and infrared heating. Constr. Build. Mater. 126, 957–966 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.115

    Article  Google Scholar 

  9. Xu, S.; García, A.; Su, J.; Liu, Q.; Tabaković, A.; Schlangen, E.: Self-healing asphalt review: from idea to practice. Adv. Mater. Interfaces 5, 1800536 (2018). https://doi.org/10.1002/admi.201800536

    Article  Google Scholar 

  10. Liu, Q.; García, Á.; Schlangen, E.; van de Ven, M.: Induction healing of asphalt mastic and porous asphalt concrete. Constr. Build. Mater. 25, 3746–3752 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.016

    Article  Google Scholar 

  11. Liu, Q.; Schlangen, E.; van de Ven, M.: Characterization of the material from the induction healing porous asphalt concrete trial section. Mater. Struct. 46, 831–839 (2013). https://doi.org/10.1617/s11527-012-9936-9

    Article  Google Scholar 

  12. García, A.; Schlangen, E.; van de Ven, M.; van Vliet, D.: Crack repair of asphalt concrete with induction energy. Heron 56, 33–43 (2011)

    Google Scholar 

  13. Gómez-Meijide, B.; Ajam, H.; Garcia, A.; Vansteenkiste, S.: Effect of bitumen properties in the induction healing capacity of asphalt mixes. Constr. Build. Mater. 190, 131–139 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.102

    Article  Google Scholar 

  14. García, A.; Bueno, M.; Norambuena-Contreras, J.; Partl, M.N.: Induction healing of dense asphalt concrete. Constr. Build. Mater. 49, 1–7 (2013). https://doi.org/10.1016/j.conbuildmat.2013.07.105

    Article  Google Scholar 

  15. Ajam, H.; Gómez-Meijide, B.; Artamendi, I.; Garcia, A.: Mechanical and healing properties of asphalt mixes reinforced with different types of waste and commercial metal particles. J. Clean. Prod. 192, 138–150 (2018). https://doi.org/10.1016/j.jclepro.2018.04.262

    Article  Google Scholar 

  16. Vila-Cortavitarte, M.; Jato-Espino, D.; Castro-Fresno, D.; Calzada-Pérez, M.: Self-healing capacity of asphalt mixtures including by-products both as aggregates and heating inductors. Materials 11, 800 (2018). https://doi.org/10.3390/ma11050800

    Article  Google Scholar 

  17. Wan, J.; Wu, S.; Xiao, Y.; Chen, Z.; Zhang, D.: Study on the effective composition of steel slag for asphalt mixture induction heating purpose. Constr. Build. Mater. 178, 542–550 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.170

    Article  Google Scholar 

  18. Jeoffroy, E.; Koulialias, D.; Yoon, S.; Partl, M.N.; Studart, A.R.: Iron oxide nanoparticles for magnetically-triggered healing of bituminous materials. Constr. Build. Mater. 112, 497–505 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.159

    Article  Google Scholar 

  19. Menozzi, A.; Garcia, A.; Partl, M.N.; Tebaldi, G.; Schuetz, P.: Induction healing of fatigue damage in asphalt test samples. Constr. Build. Mater. 74, 162–168 (2015). https://doi.org/10.1016/j.conbuildmat.2014.10.034

    Article  Google Scholar 

  20. Gallego, J.; del Val, M.A.; Contreras, V.; Páez, A.: Heating asphalt mixtures with microwaves to promote self-healing. Constr. Build. Mater. 42, 1–4 (2013). https://doi.org/10.1016/j.conbuildmat.2012.12.007

    Article  Google Scholar 

  21. Norambuena-Contreras, J.; Serpell, R.; Valdés Vidal, G.; González, A.; Schlangen, E.: Effect of fibres addition on the physical and mechanical properties of asphalt mixtures with crack-healing purposes by microwave radiation. Constr. Build. Mater. 127, 369–382 (2016). https://doi.org/10.1016/j.conbuildmat.2016.10.005

    Article  Google Scholar 

  22. Yilmaz, M.; Erdoğan Yamaç, Ö.: Evaluation of gilsonite and styrene-butadiene-styrene composite usage in bitumen modification on the mechanical properties of hot mix asphalts. J. Mater. Civ. Eng. (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001938

    Article  Google Scholar 

  23. Karakas, A.S.; Kuloglu, N.; Kok, B.V.; Yilmaz, M.: The evaluation of the field performance of the neat and SBS modified hot mixture asphalt. Constr. Build. Mater. 98, 678–684 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.140

    Article  Google Scholar 

  24. Jian, R.; Hu, X.; Han, T.; Wan, J.; Gan, W.; Chen, Z.; Zhang, Y.; Cao, C.: Optimization of induction heating parameters for improving Self-healing performance of asphalt mixture through partial least square model. Constr. Build. Mater. 365, 130019 (2023). https://doi.org/10.1016/j.conbuildmat.2022.130019

    Article  Google Scholar 

  25. Yang, C.; Wu, S.; Xie, J.; Amirkhanian, S.; Liu, Q.; Zhang, J.; Xiao, Y.; Zhao, Z.; Xu, H.; Li, N.; Wang, F.; Zhang, L.: Enhanced induction heating and self-healing performance of recycled asphalt mixtures by incorporating steel slag. J. Clean. Prod. 366, 132999 (2022). https://doi.org/10.1016/j.jclepro.2022.132999

    Article  Google Scholar 

  26. Liu, K.; Xu, P.; Wang, F.; Jin, C.; Huang, M.; Dai, D.; Fu, C.: Deicing efficiency analysis and economic-environment assessment of a novel induction heating asphalt pavement. J. Clean. Prod. 273, 123123 (2020). https://doi.org/10.1016/j.jclepro.2020.123123

    Article  Google Scholar 

  27. Liu, K.; Dai, D.; Fu, C.; Li, W.; Li, S.: Induction heating of asphalt mixtures with waste steel shavings. Constr. Build. Mater. 234, 117368 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117368

    Article  Google Scholar 

  28. Yalcin, E.: Effects of microwave and induction heating on the mechanical and self-healing characteristics of the asphalt mixtures containing waste metal. Constr. Build. Mater. 286, 122965 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122965

    Article  Google Scholar 

  29. Vural Kok, B.; Furtana Yalcin, B.; Yilmaz, M.; Yalcin, E.: Performance evaluation of bitumen modified with styrene–isoprene-styrene and crumb rubber compound. Constr. Build. Mater. 344, 128304 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128304

    Article  Google Scholar 

  30. Kök, B.V.; Yilmaz, M.; Guler, M.: Evaluation of high temperature performance of SBS+Gilsonite modified binder. Fuel 90, 3093–3099 (2011). https://doi.org/10.1016/j.fuel.2011.05.021

    Article  Google Scholar 

  31. Yilmaz, M.; Çeloğlu, M.E.: Effects of SBS and different natural asphalts on the properties of bituminous binders and mixtures. Constr. Build. Mater. 44, 533–540 (2013). https://doi.org/10.1016/j.conbuildmat.2013.03.036

    Article  Google Scholar 

  32. BS DD 213: Method for determination of the indirect tensile stiffness modulus of bituminous mixtures. Draft for Development, British Standards Institution, London (1993)

  33. Subagio, B.S.; Siswosoebrotho, B.I.; Karsaman, R.H.: Development of laboratory performance of Indonesian rock asphalt (Asbuton) in hot rolled asphalt mix. Proc. East. Asia Soc. Transp. Stud. 4, 436–449 (2003)

    Google Scholar 

  34. Aragão, F.T.S.; Lee, J.; Kim, Y.-R.; Karki, P.: Material-specific effects of hydrated lime on the properties and performance behavior of asphalt mixtures and asphaltic pavements. Constr. Build. Mater. 24, 538–544 (2010). https://doi.org/10.1016/j.conbuildmat.2009.10.005

    Article  Google Scholar 

  35. Goh, S.W.; You, Z.: A simple stepwise method to determine and evaluate the initiation of tertiary flow for asphalt mixtures under dynamic creep test. Constr. Build. Mater. 23, 3398–3405 (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.020

    Article  Google Scholar 

  36. Khodaii, A.; Mehrara, A.: Evaluation of permanent deformation of unmodified and SBS modified asphalt mixtures using dynamic creep test. Constr. Build. Mater. 23, 2586–2592 (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.015

    Article  Google Scholar 

  37. Tayfur, S.; Ozen, H.; Aksoy, A.: Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr. Build. Mater. 21, 328–337 (2007). https://doi.org/10.1016/j.conbuildmat.2005.08.014

    Article  Google Scholar 

  38. Oruç, Ş.: Yoğun Granülometrili Emülsifiye Asfalt Betonunda Çimentonun Karışım Performansı Üzerindeki Etkisi (2002)

  39. Witczak, M.W.; Kaloush, K.E.; Pellinen, T.; El-Basyouny, M.; Von Quintus, H.: Simple Performance Test for Superpave Mix Design, Washington, DC (2002)

  40. Garcia, A.; Salih, S.; Gómez-Meijide, B.: Optimum moment to heal cracks in asphalt roads by means electromagnetic induction. Constr. Build. Mater. 238, 117627 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkut Yalcin.

Ethics declarations

Conflict of Interest

Authors are aware of its content and approve its submission. The article has not been published previously and is not under consideration for publication elsewhere. No conflict of interest exists in the article and if accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the Publisher.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atici, İ.B., Yalcin, E. & Yilmaz, M. Investigation of Self-healing and Mechanical Properties of Asphalt Mixtures Prepared with SBS and Waste Metal. Arab J Sci Eng 49, 4539–4555 (2024). https://doi.org/10.1007/s13369-023-08152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08152-6

Keywords

Navigation