Skip to main content
Log in

A Low-Profile AMC-Backed Octagonal Chipless RFID Tag with Enhanced Read Range

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The paper proposes a low-profile chipless RFID tag with an enhanced read range. To improve the read range, an artificial magnetic conductor (AMC) is used as the backplane of the resonator. The proposed technique is presented at the operating frequency of 5.07 GHz, which could further be shifted to other frequencies in the UWB band by optimizing the geometric parameters of the design. The octagonal-shaped resonator of the tag and the AMC backplane is designed on a 0.15-mm and 1.6-mm-thick FR-4 substrate, respectively. The AMC as backplane leads to seven times enhancement of the read range. The simulated results of the tag are experimentally validated using the bistatic measurement method. The overall dimension of the proposed tag is 28 × 28 mm2 and is suitable for tracking and identification of small-sized objects. The proposed technique of read range enhancement could further be matured for multi-resonance chipless RFID tags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rezazadeh, H.; Abazari, R.; Justin, M.; Bekir, A.; Korkmaz, A.: Bright and singular optical solitons in nonlinear negative-index materials with quadratic-cubic nonlinearity. Arab. J. Sci. Eng. 46, 5977–5991 (2021). https://doi.org/10.1007/s13369-020-05194-y

    Article  Google Scholar 

  2. Sievenpiper, D.; Zhang, L.; Broas, R.F.J.; Yablonovitch, E.; Alexopolous, N.G.: Corrections to “High-impedance electromagnetic surfaces with a forbidden frequency band.” IEEE Trans. Microwave Theory and Tech. 48, 620 (2000). https://doi.org/10.1109/TMTT.2000.842037

    Article  Google Scholar 

  3. Elwi, T.A.: A further realization of a flexible metamaterial-based antenna on nickel oxide polymerized palm fiber substrates for RF energy harvesting. Wireless Pers. Commun. 115, 1623–1634 (2020). https://doi.org/10.1007/s11277-020-07646-y

    Article  Google Scholar 

  4. Elwi, T.A.; Jassim, D.A.; Mohammed, H.H.: Novel miniaturized folded UWB microstrip antenna-based metamaterial for RF energy harvesting. Int. J. Commun Syst 33, 1–15 (2020). https://doi.org/10.1002/dac.4305

    Article  Google Scholar 

  5. Fattouche, A.; Mouffok, L.; Hebib, S.; Mansoul, A.: A triple band artificial magnetic conductor: design & analytical model. Prog. Electromagnet. Res. Lett. 104, 161–168 (2022). https://doi.org/10.2528/PIERL22030804

    Article  Google Scholar 

  6. Haleem, M.; Elwi, T.A.: Circularly polarized metamaterial patch antenna circuitry for modern applications. Int. J. Emerg. Technol. Adv. Eng. 12, 44–50 (2022). https://doi.org/10.46338/ijetae1222_05

    Article  Google Scholar 

  7. Al-Hadeethi, S.T.; Elwi, T.A.; Ibrahim, A.A.: A printed reconfigurable monopole antenna based on a novel metamaterial structures for 5G applications. Micromachines. 14, 1–14 (2023). https://doi.org/10.3390/mi14010131

    Article  Google Scholar 

  8. Xue, J.; Jiang, W.; Gong, S.: Chessboard AMC surface based on quasi-fractal structure for wideband RCS reduction. IEEE Antennas Wirel. Propag. Lett. 17, 201–204 (2018). https://doi.org/10.1109/LAWP.2017.2780085

    Article  Google Scholar 

  9. Dewan, R.; Rahim, S.K.A.; Ausordin, S.F.; Purnamirza, T.: The improvement of array antenna performance with the implementation of an artificial magnetic conductor (AMC) ground plane and in-phase superstrate. Prog. Electromagnet. Res. 140, 147–167 (2013). https://doi.org/10.2528/PIER13040206

    Article  Google Scholar 

  10. Malekpoor, H.; Abolmasoumi, A.: Gain and isolation improvement of compact MIMO printed dipole arrays realized by second iteration Giuseppe Peano AMC for 4G/5G wireless networks. Wireless Netw. 28, 1949–1962 (2022). https://doi.org/10.1007/s11276-022-02950-w

    Article  Google Scholar 

  11. Xu, J.H.; Zhu, X.F.; Chen, D.C.; Wei, Q.; Wu, D.J.: Broadband low-frequency acoustic absorber based on metaporous composite. Chinese Phys. B (2022). https://doi.org/10.1088/1674-1056/ac4907

    Article  Google Scholar 

  12. Dewan, R.; Rahim, M.K.A.: Antenna performance enhancement with Artificial Magnetic Conductor (AMC). Proceeding - 2015 IEEE International Conference on Antenna Measurements and Applications, IEEE CAMA 2015. 3, 5–8 (2016). https://doi.org/10.1109/CAMA.2015.7428141

  13. Bibi, T.; Khan, A.T.; Amin, Y.; Ahmed, S.: RFID in IoT, miniaturized pentagonal slot-based data dense Chipless RFID tag for IoT applications. Arab. J. Sci. Eng. 47, 1147–1157 (2022). https://doi.org/10.1007/s13369-021-06228-9

    Article  Google Scholar 

  14. Vena, A.; Perret, E.; Tedjini, S.: A compact chipless RFID tag using polarization diversity for encoding and sensing. 2012 IEEE International Conference on RFID, RFID 2012. 191–197 (2012). https://doi.org/10.1109/RFID.2012.6193050

  15. Habib, A.; Mirza, A.; Yasir Umair, M.; Nabeel Salimi, M.; Ahmed, S.; Amin, Y.: Data dense chipless RFID tag with efficient band utilization. AEU – Int. J. Electron. Commun. 152, 154220 (2022). https://doi.org/10.1016/j.aeue.2022.154220

    Article  Google Scholar 

  16. Vena, A.; Perret, E.; Tedjni, S.: A depolarizing chipless RFID tag for robust detection and its FCC compliant UWB reading system. IEEE Trans. Microw. Theory Tech. 61, 2982–2994 (2013). https://doi.org/10.1109/TMTT.2013.2267748

    Article  Google Scholar 

  17. Tariq, N.; Riaz, M.A.; Shahid, H.; Khan, M.J.; Amin, Y.; Tenhunen, H.: A novel kite-shaped Chipless RFID tag for low-profile applications. IETE J. Res. 68, 2149–2156 (2022). https://doi.org/10.1080/03772063.2019.1691061

    Article  Google Scholar 

  18. Kaur, M.; Agarwal, M.; Khanna, R.: Array arrangement of octagonal chipless RFID tag for read range enhancement. 1292–1296 (2022)

  19. Betancourt, D.; Barahona, M.; Haase, K.; Schmidt, G.; Hubler, A.; Ellinger, F.: Design of printed chipless-RFID tags with QR-code appearance based on genetic algorithm. IEEE Trans. Antennas Propag. 65, 2190–2195 (2017). https://doi.org/10.1109/TAP.2017.2684193

    Article  Google Scholar 

  20. Li, H.; Wang, B.; Wu, M.; Zhu, J.; Zhou, C.: Design and analysis of chipless RFID tags based on retro-radiators. IEEE Access. 7, 148208–148217 (2019). https://doi.org/10.1109/ACCESS.2019.2946614

    Article  Google Scholar 

  21. Sharma, V.; Malhotra, S.; Hashmi, M.: Slot resonator based novel orientation independent Chipless RFID tag configurations. IEEE Sens. J. 19, 5153–5160 (2019). https://doi.org/10.1109/JSEN.2019.2902622

    Article  Google Scholar 

  22. Tariq, N.; Riaz, M.A.; Shahid, H.; Khan, M.J.; Khan, M.S.; Amin, Y.; Loo, J.; Tenhunen, H.: Orientation independent chipless RFID tag using novel trefoil resonators. IEEE Access. 7, 122398–122407 (2019). https://doi.org/10.1109/ACCESS.2019.2937131

    Article  Google Scholar 

  23. Nijas, C.M.; Dinesh, R.; Deepak, U.; Rasheed, A.; Mridula, S.; Vasudevan, K.; Mohanan, P.: Chipless RFID tag using multiple microstrip open stub resonators. IEEE Trans. Antennas Propag. 60, 4429–4432 (2012). https://doi.org/10.1109/TAP.2012.2207081

    Article  Google Scholar 

  24. Wiltshire, B.D.; Zarifi, T.; Zarifi, M.H.: Passive split ring resonator tag configuration for RFID-based wireless permittivity sensing. IEEE Sens. J. 20, 1904–1911 (2020). https://doi.org/10.1109/JSEN.2019.2950912

    Article  Google Scholar 

  25. Babaeian, F.; Karmakar, N.C.: Development of cross-polar orientation-insensitive Chipless RFID tags. IEEE Trans. Antennas Propag. 68, 5159–5170 (2020). https://doi.org/10.1109/TAP.2020.2975639

    Article  Google Scholar 

  26. CST Microwave Studio available, www.cst.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Agarwal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Agarwal, M. & Khanna, R. A Low-Profile AMC-Backed Octagonal Chipless RFID Tag with Enhanced Read Range. Arab J Sci Eng 49, 6217–6224 (2024). https://doi.org/10.1007/s13369-023-08129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08129-5

Keywords

Navigation