Skip to main content
Log in

Ultrasmall Cu-Substituted NiZn Ferrite Nanoparticles: Efficiency for the Removal of the Alizarin Red S Dye and Reusability

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A series of Cu-substituted NiZn ferrite nanoparticles (Ni0.5Zn0.5-xCuxFe2O4; 0 ≤ x ≤ 0.2) were synthesized by the polyol method and then characterized and investigated for their efficiency for the adsorptive removal of Alizarin Red S (ARS) dye as well as for their reusability. The effect of Cu2+ substitution for Zn2+ on the phase formation, crystal structure, microstructure and magnetic properties was investigated. The powders were pure phases with a cubic spinel structure and a slight departure of the unit cell parameter from the expected linearity variation as a function of Cu2 content. The particles are ultrasmall sized nanoparticles (~4–6 nm) with an almost spherical shape. The surface chemistry and the core local structure of the nanoparticles were ascertained from infrared. Magnetic study revealed a superparamagnetic behavior, and the variation observed for the main magnetic characteristics was interpreted on the basis on the changes in chemical composition, cation distribution and nanoparticles morphology. Adsorption–desorption of ARS onto the nanoparticles was investigated by varying various physicochemical parameters. The ferrite member with x = 0.15 exhibited the best removal capacity. At the optimum pH (pH2.0) the adsorption was fast during the first stage of adsorption process. Three kinetic models were tested. The adsorption data were best fitted with the pseudo-second-order model. The adsorption isotherms were measured and analyzed by Langmuir and Freundlich models. Based on Freundlich model, the maximum adsorption capacity was found to be high (~ 181 mg g−1). Besides, good reusability performance was observed after five adsorption–desorption-regeneration cycles. The mechanisms of both adsorption and desorption were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

All data generated and/or analyzed during this study are included in this published article.

References

  1. Hill, R.J.; Craig, J.R.; Gibbs, G.V.: Systematics of the spinel structure type. Phys. Chem. Miner. 4, 317–339 (1979). https://doi.org/10.1007/BF00307535

    Article  Google Scholar 

  2. Šepelák, V.; Becker, K.D.: Comparison of the cation inversion parameter of the nanoscale milled spinel ferrites with that of the quenched bulk materials. Mater. Sci. Eng. A 375–377, 861–864 (2004). https://doi.org/10.1016/j.msea.2003.10.178

    Article  Google Scholar 

  3. Siddique, M.; Butt, N. M.: Effect of particle size on degree of inversion in ferrites investigated by Mössbauer spectroscopy. Physica B 405, 4211–4215 (2010). https://doi.org/10.1016/j.physb.2010.07.012

    Article  Google Scholar 

  4. Rai, M.; Jamil, B.: Nanotheranostics: Applications and Limitations. Springer, Cham (2019)

  5. Kefeni, K.K.; Mamba, B.B.; Msagati, T.A.M.: Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (2017). https://doi.org/10.1016/j.seppur.2017.07.015

    Article  Google Scholar 

  6. Pang, Y.L.; Lim, S.; Ong, H.C.; Chong, W.T.: Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram. Int. 42, 9–34 (2016). https://doi.org/10.1016/j.ceramint.2015.08.144

    Article  Google Scholar 

  7. Dar, M.A.; Verma, V.; Gairola, S.P.; Siddiqui, W.A.; Singh, R.K.; Kotnala, R.K.: Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl. Surf. Sci. 258, 5342–5347 (2012). https://doi.org/10.1016/j.apsusc.2012.01.158

    Article  Google Scholar 

  8. Wu, K.; Li, J.; Zhang, C.: Zinc ferrite based gas sensors: a review. Ceram. Int. 45, 11143–11157 (2019). https://doi.org/10.1016/j.ceramint.2019.03.086

    Article  Google Scholar 

  9. Gubin, S.P. (Ed).: Magnetic Nanoparticles. Wiley, Hoboken (2009). https://doi.org/10.1002/9783527627561

  10. Dong, H.; Chena, Y.C.; Feldmann, C.: Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem. 17, 4107–4132 (2015). https://doi.org/10.1039/C5GC00943J

    Article  Google Scholar 

  11. Huili, H.; Sophie, N.; Tahar, L.B.: Polyol-made stoichiometric Co0.2Ni0.3Zn0.5Fe2O4 nanoparticles: synthetic optimization, structural, and microstructural studies. Int. J. Nanotechnol. 12, 631–641 (2015). https://doi.org/10.1504/IJNT.2015.068884

    Article  Google Scholar 

  12. Walid, M.; Tahar, L.B.; Patricia, B.; Darine, A.H.; Michel, B.; Olivier, S.; Souad, A.: Polyol-made luminescent and superparamagnetic -NaY0.8Eu0.2F4@γ-Fe2O3 core-satellites nanoparticles for dual magnetic resonance and optical imaging. Nanomaterials 10, 393–410 (2020). https://doi.org/10.3390/nano10020393

    Article  Google Scholar 

  13. Shanker, U.; Rani, M.; Jassal, V.: Degradation of hazardous organic dyes in water by nanomaterials. Environ. Chem. Lett. 15, 623–642 (2017). https://doi.org/10.1007/s10311-017-0650-2

    Article  Google Scholar 

  14. Clarke, E.A.; Anliker, R.: Organic dyes and pigments. In: Anthropogenic Compounds. The Handbook of Environmental Chemistry, vol 3/3A. (1980) Springer, Berlin. https://doi.org/10.1007/978-3-540-38522-6_7

  15. Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A.: Textile finishing dyes and their impact on aquatic environs. Heliyon 5, e02711 (2019). https://doi.org/10.1016/j.heliyon.2019.e02711

    Article  Google Scholar 

  16. Córdoba, A.; Magario, I.; Ferreira, M.L.: Experimental design and MM2–PM6 molecular modelling of hematin as a peroxidase-like catalyst in Alizarin Red S degradation. J. Mol. Catal. A: Chem. 355, 44–60 (2012). https://doi.org/10.1016/j.molcata.2011.12.01

    Article  Google Scholar 

  17. Albadarin, A.B.; Mangwandi, C.: Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: isotherm study in single and binary systems. J. Environ. Manage. 164, 86–93 (2015). https://doi.org/10.1016/j.jenvman.2015.08.040

    Article  Google Scholar 

  18. Jeliński, T.; Cysewski, P.: Structure and properties of alizarin complex formed with alkali metal hydroxides in methanol solution. J Mol Model 22, 126–136 (2016). https://doi.org/10.1007/s00894-016-2988-y

    Article  Google Scholar 

  19. Ghaedi, M.; Hassanzadeh, A.; Kokhdan, S.N.: Multiwalled carbon nanotubes as adsorbents for the kinetic and equilibrium study of the removal of alizarin red s and morin. J. Chem. Eng. Data 56, 2511–2520 (2011). https://doi.org/10.1021/je2000414

    Article  Google Scholar 

  20. Gautam, P.K.; Shivapriya, P.M.; Banerjee, S.; Sahoo, A.K.; Samanta, S.K.: Biogenic fabrication of iron nanoadsorbents from mixed waste biomass (MWB) for aqueous phase removal of alizarin red s and tartrazine: kinetics, isotherm and thermodynamic investigation. Environ. Prog. Sustain. Energy 39, 13326 (2019). https://doi.org/10.1002/ep.13326

    Article  Google Scholar 

  21. Tahar, L.B.; Mohamed, H.O.: Fast adsorption-desorption of eriochrome black T using superparamagnetic NiZn ferrite nanoparticles. Desalin. Water Treat. 196, 315–328 (2020). https://doi.org/10.5004/dwt.2020.26039

    Article  Google Scholar 

  22. Prabhat, K.R.; Jechan, L.; Suresh, K.K.; Eilhann, E.K.; Yiu, F.T.; Yong, S.O.; Ki-Hyun, K.: A critical review of ferrate(VI)-based remediation of soil and groundwater. Environ. Res. 160, 420–448 (2018). https://doi.org/10.1016/j.envres.2017.10.016

    Article  Google Scholar 

  23. Liu, K.; Vikrant, B.; Kim, K.; Kumar, V.; Kailasa, S.K.: Critical role of water stability in metal–organic frameworks and advanced modification strategies for the extension of their applicability. Environ. Sci. Nano. 7, 1319–1347 (2020). https://doi.org/10.1039/C9EN01321K

    Article  Google Scholar 

  24. Sedigheh, K.; Neda, A.S.: A comparative study for adsorption of alizarin red s from aqueous samples by magnetic nanoparticles of Fe3O4, CoFe2O4 and ionic liquid-modified Fe3O4. Chem. Methodol. 2:23–38. (2018). https://doi.org/10.22631/chemm.2017.101267.1015

  25. Fu, F.; Gao, Z.; Gao, L.; Li, D.: Effective adsorption of anionic dye, Alizarin Red S, from aqueous solutions on activated clay modified by iron oxide. Ind. Eng. Chem. Res. 50, 9712–9717 (2011). https://doi.org/10.1021/ie200524b

    Article  Google Scholar 

  26. Pirillo, S.; Ferreira, M.L.; Rueda, E.H.: The effect of pH in the adsorption of Alizarin and Eriochrome blue black R onto iron oxides. J. Hazard. Mater. 168, 168–178 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.007

    Article  Google Scholar 

  27. Fan, L.; Zhang, Y.; Li, X.; Lo, C.; Lu, F.; Qiu, H.: Removal of alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules. Colloids Surf., B 91, 250–257. (2012). https://doi.org/10.1016/j.colsurfb.2011.11.014

  28. Zhang, Z.; Chen, H.; Wu, W.; Pang, W.; Yan, G. :Efficient removal of Alizarin Red S from aqueous solution by polyethyleneimine functionalized magnetic carbon nanotubes. Bioresour. Technol. 293, 122100. (2019). https://doi.org/10.1016/j.biortech.2019.12210

  29. Gholivand, M.B.; Yamini, Y.; Dayeni, M.; Seidi, S.; Tahmasebi, E.: Adsorptive removal of alizarin red-S and Alizarin Yellow GG from aqueous solutions using polypyrrole-coated magnetic nanoparticles. J. Environ. Chem. Eng. 3, 529–540 (2015). https://doi.org/10.1016/j.jece.2015.01.011

    Article  Google Scholar 

  30. Liang, Y.; He, Y.; Zhang, Y.; Zhu Q,: Adsorption property of Alizarin red S by NiFe2O4 /polyaniline magnetic composite. J. Environ. Chem. Eng. 6, 416–425 (2018). https://doi.org/10.1016/j.jece.2017.12.022

    Article  Google Scholar 

  31. Le Bail, A.: Monte Carlo indexing with McMaille. Powder Diffr. 19, 249–254 (2004). https://doi.org/10.1154/1.1763152

    Article  Google Scholar 

  32. Le Bail, A.; Duroy, H.; Fourquet, J.L.: Ab-initio structure determination of LiSbWO6 by X-ray powder (1988)

  33. Langford, J.I.; Wilson, A.J.C.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978). https://doi.org/10.1107/s0021889878012844

    Article  Google Scholar 

  34. Mohammad, N.; Hoda, S.; Ahmad, H.; Hory, M.: Effect of copper substitution on structural and magnetic properties of NiZn ferrite nanopowders. J. Magn. 18, 391–394 (2013). https://doi.org/10.4283/JMAG.2013.18.4.391

    Article  Google Scholar 

  35. Afzal, A.; Abuilaiwi, F.A.; Javaid, R.; Ali, F.; Habib, A.: Solid-state synthesis of heterogeneous Ni0.5Cu0.5-xZnxFe2O4 spinel oxides with controlled morphology and tunable dielectric properties. J. Mater. Sci.: Mater Electron. 31, 14261–14270 (2020). https://doi.org/10.1007/s10854-020-03982-8

    Article  Google Scholar 

  36. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Found. Crystallogr. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  37. Wei, Q.; Li, J.; Chen, Y.; Han, Y.: Cation distribution in NixMn1−xFe2O4 ferrites. Mater. Chem. Phys. 74, 340–343 (2002). https://doi.org/10.1016/s0254-0584(01)00487-4

    Article  Google Scholar 

  38. StCO, H.; Alexandra, N.: Simple spinels; crystallographic parameters, cation radii, lattice energies, and cation distribution. Am. Mineral. 68, 181–194 (1983)

    Google Scholar 

  39. Pong, W.F.; Chang, Y.K.; Su, M.H.; Tseng, P.K.; Lin, H.J.; Ho, G.H.; Chen, C.T.: Magnetic orientation of Ni in Zn-Ni ferrites studied by soft-x-ray magnetic circular dichroism. Phys. Rev. B: Condens. Matter. 55, 11409–11413 (1997). https://doi.org/10.1103/physrevb.55.11409

    Article  Google Scholar 

  40. Beji, Z.; Smiri, L.S.; Yaacoub, N.; Grenèche, J.M.; Menguy, N.; Ammar, S.; Fiévet, F.: Annealing effect on the magnetic properties of polyol-made Ni−Zn ferrite nanoparticles. Chem. Mater. 22, 1350–1366 (2010). https://doi.org/10.1021/cm901969c

    Article  Google Scholar 

  41. Artus, M.; Tahar, L.B.; Herbst, F.; Smiri, L.; Villain, F.; Yaacoub, N.; Fiévet, F.: Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol. J. Phys.: Condens. Matter. 23, 506001 (2011). https://doi.org/10.1088/0953-8984/23/50/506001

  42. Hamdeh, H.H.; Hikal, W.M.; Taher, S.M.; Ho, J.C.; Thuy, N.P.; Quy, O.K.; Hanh, N.: Mössbauer evaluation of cobalt ferrite nanoparticles synthesized by forced hydrolysis. J. Appl. Phys. 97, 064310 (2005). https://doi.org/10.1063/1.1856219

    Article  Google Scholar 

  43. Trivedi, B.S.; Jani, N.N.; Joshi, H.H., et al.: Cation distribution of the system CuAlxFe2−xO4 by X-rays and Mossbauer studies. J. Mater. Sci. Science 35, 5523–5526 (2000). https://doi.org/10.1023/A:1004841601270

    Article  Google Scholar 

  44. Tahar, L.B.; Basti, H.; Herbst, F.; Smiri, L.S.; Quisefit, J.P.; Yaacoub, N.; Ammar, S.: Co1−xZnxFe2O4 (0≤x≤1) nanocrystalline solid solution prepared by the polyol method: Characterization and magnetic properties. Mater. Res. Bull. 47, 590–2598 (2012). https://doi.org/10.1016/j.materresbull.2012.080

    Article  Google Scholar 

  45. Makhlouf, S.A.; Parker, F.T.; Berkowitz, A.E.: Magnetic hysteresis anomalies in ferritin. Phys. Rev. B: Condens. Matter. 55, R14717–R14720 (1997). https://doi.org/10.1103/physrevb.55.r14717

    Article  Google Scholar 

  46. Gubin, S.P.; Koksharov, Y.A.; Khomutov, G.B.; Yurkov, G.Y..: Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74, 489–520 (2005). https://doi.org/10.1070/RC2005v074n06ABEH000897

    Article  Google Scholar 

  47. Daliya, S.M.; Ruey, S.J.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007). https://doi.org/10.1016/j.cej.2006.11.001

    Article  Google Scholar 

  48. Lu, A.H.; Salabas, E.L.; Ferdi, S.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. 46, 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

    Article  Google Scholar 

  49. Shrotri, J.; Kulkarni, S.; Deshpande, C.; Mitra, A.; Sainkar, S.; Anil Kumar, P.; Date, S.: Effect of Cu substitution on the magnetic and electrical properties of Ni–Zn ferrite synthesised by soft chemical method. Mater. Chem. Phys. 59, 1–5 (1999). https://doi.org/10.1016/s0254-0584(99)00019-x

    Article  Google Scholar 

  50. Murthy, N.S.S.; Natera, M.G.; Youssef, S.I.; Begum, R.J.; Srivastava, C.M.: Yafet-Kittel angles in zinc-nickel ferrites. Phys. Rev. S. 181, 969–977 (1969). https://doi.org/10.1103/physrev.181.969

    Article  Google Scholar 

  51. Demortière, A.; Panissod, P.; Pichon, B.P.; Pourroy, G.; Guillon, D.; Donnio, B.; Bégin-Colin, S.: Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale 3, 225–232 (2011). https://doi.org/10.1039/c0nr00521e

    Article  Google Scholar 

  52. Ortega, D.; Fort, E.V.; Garcia, D.A.; Garcia, R.; Litrán, R.; Barrera-Solano, C.; Del-Solar, M.R.: Domínguez, M.: Size and surface effects in the magnetic properties of maghemite and magnetite coated nanoparticles. Philos. Trans. R. Soc. London, Ser. A 368:4407–4418 (2010). https://www.jstor.org/stable/20752670

  53. Gilleo, M.A.: Superexchange interaction in ferrimagnetic garnets and spinels which contain randomly incomplete linkages. J. Phys. Chem. Solids 13, 33–39 (1960). https://doi.org/10.1016/0022-3697(60)90124-4

    Article  Google Scholar 

  54. Guat, T.T.; Xie, Y.G.; Wai, F.Y.: Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: a review. Environ. Res. 212(Part B), 113248 (2022). https://doi.org/10.1016/j.envres.2022.113248

    Article  Google Scholar 

  55. Santander, P.; Oyarce, E.; Sánchez, J.: New insights in the use of a strong cationic resin in dye adsorption. Water Sci. Technol. 81, 773–780 (2020). https://doi.org/10.2166/wst.2020.158

    Article  Google Scholar 

  56. Ravindra, K.G.; Sushmita, B.; Pavan, K.G.; Vandani, R.; Ajay, K.; Sanjeev, K.S.; Chattopadhyaya, M.C.: Biosorption of an acidic dye, alizarin red s, onto biosorbent of mustard husk: kinetic, equilibrium modeling and spectroscopic analysis. AJRC. 7, 415–425 (2014)

    Google Scholar 

  57. Tahar, L.B.; Oueslati, M.H.; Grindi, B.: A comparative study of two CoZn nanoferrites: preparation, characterization, magnetic properties, Cr(VI) removal and regeneration. Desalin. Water Treat. 144, 243–256 (2019). https://doi.org/10.5004/dwt.2019.23682

    Article  Google Scholar 

  58. Tahar, L.B.; Oueslati, M.H.; Abualreish, M.J.A.: Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium (VI) from aqueous solutions. J. Colloid Interface Sci. 512, 115–126 (2018). https://doi.org/10.1016/j.jcis.2017.10.044

    Article  Google Scholar 

  59. Thanaa, I.S.; Marwa, F.E.K.; Abd, E.M.Z.; Soheir, M.E.K.: Preparation and application of magnetite nanoparticles immobilized on cellulose acetate nanofibers for lead removal from polluted water. Water Supply 17, 176–187 (2017). https://doi.org/10.2166/ws.2016.124

    Article  Google Scholar 

  60. Sahoo, T.R.; Prelot, B.: Adsorption processes for the removal of contaminants from wastewater. Nanomaterials for the detection and removal of wastewater pollutants, pp. 161–222. In: Barbara B, Francesca SF, Rajandrea S. (ed) Nanomaterials for the Detection and Removal of Wastewater Pollutants. Micro and Nano Technologies. Elsevier, Amsterdam, pp. 161–222. (2020). https://doi.org/10.1016/b978-0-12-818489-9.00007-4

  61. Cheung, C.; Porter, J.; Mckay, G.: Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res. 35, 605–612 (2001). https://doi.org/10.1016/s0043-1354(00)00306-7

    Article  Google Scholar 

  62. Mohan, D.; Pittman, C.U.: Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137, 762–811 (2006). https://doi.org/10.1016/j.jhazmat.2006.06.060

    Article  Google Scholar 

  63. Alkaram, U.F.; Mukhlis, A.A.; Al-Dujaili, A.H.: The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J. Hazard. Mater. 169, 324–332 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.153

    Article  Google Scholar 

  64. Jiang, J.Q.; Cooper, C.; Ouki, S.: Comparison of modified montmorillonite adsorbents. Chemosphere 47, 711–716 (2002). https://doi.org/10.1016/s0045-6535(02)00011-5

    Article  Google Scholar 

  65. Agboola, O.D.; Benson, N.U.: Physisorption and chemisorption mechanisms influencing micro (nano) plastics-organic chemical contaminants interactions: a review. Front. Environ. Sci. 9, 678574 (2021). https://doi.org/10.3389/fenvs.2021.678574

    Article  Google Scholar 

  66. Shen, L.; Laibinis, P.E.; Hatton, T.A.: Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15, 447–453 (1999). https://doi.org/10.1021/la9807661

    Article  Google Scholar 

  67. Yang, K.; Peng, H.; Wen, Y.; Li, N.: Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 256, 3093–3097 (2010). https://doi.org/10.1016/j.apsusc.2009.11.079

    Article  Google Scholar 

  68. Moriguchi, T.; Yano, K.; Nakagawa, S.; Kaji, F.: Elucidation of adsorption mechanism of bone-staining agent alizarin red S on hydroxyapatite by FT-IR microspectroscopy. J. Colloid Interface Sci. 260, 19–25 (2003). https://doi.org/10.1016/s0021-9797(02)00157-1

    Article  Google Scholar 

  69. Basti, H.; Tahar, L.B.; Smiri, L.S.; Herbst, F.; Vaulay, M.-J.; Chau, F.; Benderbous, S.: Catechol derivatives-coated Fe3O4 and γ-Fe2O3 nanoparticles as potential MRI contrast agents. J. Colloid Interface Sci. 341, 248–254 (2010). https://doi.org/10.1016/j.jcis.2009.09.043

    Article  Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to the deanship of Scientific Research at Northern Border University for its funding of the present research work through the research project No. SCIA-2022-11-1528.

Funding

This work was supported by the deanship of Scientific Research at Northern Border University through the research project No. SCIA-2022–11-1528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Ben Tahar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1244 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogharbel, R., Tahar, L.B., Huili, H. et al. Ultrasmall Cu-Substituted NiZn Ferrite Nanoparticles: Efficiency for the Removal of the Alizarin Red S Dye and Reusability. Arab J Sci Eng 49, 311–337 (2024). https://doi.org/10.1007/s13369-023-08107-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08107-x

Keywords

Navigation