Skip to main content
Log in

In Vitro Antioxidant Potential of Hippophae rhamnoides Protects DNA Against H2O2 Induced Oxidative Damage

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The plant’s proclivity to grow close to the water and its profusion of thorns are what give it the name “Sea buckthorn.” It was discovered that feeding the leaves of this plant to horses enhanced their health and made their hair shine, leading to the genus name Hippophae, which in Latin means “Shining Horse.” It is a powerful source of several bioactive substances, particularly polyphenols and carotenoids that have beneficial effects on the human body. We aim to evaluate the in vitro antioxidant potential of Sea buckthorn (Hippophae rhamnoides) and its effect on protecting DNA from damage. Total phenolic content in different extracts of H. rhamnoides was determined by using Folin–Ciocalteu method. The antioxidant activity was determined by DPPH radical scavenging method. Reducing power was estimated by Fe3+- Fe2+ transformation method. Hydroxyl and superoxide radical scavenging activities were also determined besides measuring the effect of different extracts on Fenton’s reaction induced DNA damage of calf thymus DNA. Results indicate that methanolic extract of H. rhamnoides was having higher phenolic content, higher free radical scavenging activity and stronger reducing capacity as compared to aqueous and ethyl acetate extract. Also, it was found to be a better scavenger of superoxide and hydroxyl radicals and more potent in preventing DNA damage as compared to aqueous and ethyl acetate extract. The neutralization or destruction of free radicals by antioxidant activity of methanolic extract of H. rhamnoides makes it a promising therapeutic candidate for prevention and/or treatment of oxidative stress-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data regarding this study is available and can be produced in proper request to the corresponding author.

References

  1. Lobo, V.; Patil, A.; Phatak, A.; Chandra, N.: Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev. 4, 118 (2010). https://doi.org/10.4103/0973-7847.70902

    Article  Google Scholar 

  2. Kada, S.; Bouriche, H.; Senator, A.; Demirtaş, I.; Özen, T.; ÇekenToptanci, B.; Kızıl, G.; Kızıl, M.: Protective activity of Hertia cheirifolia extracts against DNA damage, lipid peroxidation and protein oxidation. Pharm. Biol. 55, 330–337 (2017). https://doi.org/10.1080/13880209.2016.1261907

    Article  Google Scholar 

  3. Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. (2012). https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  4. Chao, M.-R.; Rossner, P.; Haghdoost, S.; Jeng, H.A.; Hu, C.-W.: Nucleic acid oxidation in human health and disease. Oxid. Med. Cell Longev. 2013, 1–2 (2013). https://doi.org/10.1155/2013/368651

    Article  Google Scholar 

  5. Broustas, C.G.; Lieberman, H.B.: DNA damage response genes and the development of cancer metastasis. Radiat. Res. 181, 111–130 (2014). https://doi.org/10.1667/RR13515.1

    Article  Google Scholar 

  6. Michel, T.; Destandau, E.; le Floch, G.; Lucchesi, M.E.; Elfakir, C.: Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophaë rhamnoides L.) leaf, stem, root and seed. Food Chem. 131, 754–760 (2012). https://doi.org/10.1016/J.FOODCHEM.2011.09.029

    Article  Google Scholar 

  7. Aidi, W.; Mhamdi, B.; Sriti, J.; Ben, J.M.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B.: Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol. 48, 1362–1370 (2010). https://doi.org/10.1016/J.FCT.2010.03.002

    Article  Google Scholar 

  8. Lamo, K.; Solanki, S.P.S.: sea buckthorn a boon for trans-himalayan region of ladakh: a review. Agric. Rev. 40, 289–295 (2019)

    Google Scholar 

  9. Jaśniewska, A.; Diowksz, A.: Wide spectrum of active compounds in sea buckthorn (Hippophae rhamnoides) for disease prevention and food production. Antioxidants 10, 1279 (2021). https://doi.org/10.3390/antiox10081279

    Article  Google Scholar 

  10. Arif, S.; Ahmed, S.D.; Shah, A.H.; Hassan, L.; Awan, S.I.; Hamid, A.; Batool, F.: Determination of optimum harvesting time for vitamin C, oil and mineral elements in berries sea buckthorn (Hippophae rhamnoides). Pak. J. Bot. 42, 3561–3568 (2010)

    Google Scholar 

  11. Papuc, C.; Diaconescu, C.; Nicorescu, V.: Antioxidant activity of sea buckthorn (Hippophae rhamnoides) extracts compared with common food additives. Roum. Biotechnol. Lett. 13, 4049–4053 (2008)

    Google Scholar 

  12. Geetha, S.; Sai Ram, M.; Singh, V.; Ilavazhagan, G.; Sawhney, R.C.: Effect of seabuckthorn on sodium nitroprusside-induced cytotoxicity in murine macrophages. Biomed. Pharmacother. 56, 463–467 (2002). https://doi.org/10.1016/S0753-3322(02)00290-1

    Article  Google Scholar 

  13. Geetha, S.; Sai Ram, M.; Mongia, S.S.; Singh, V.; Ilavazhagan, G.; Sawhney, R.C.: Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides L.) on chromium(VI) induced oxidative stress in albino rats. J. Ethnopharmacol. 87, 247–251 (2003). https://doi.org/10.1016/S0378-8741(03)00154-5

    Article  Google Scholar 

  14. Narayanan, S.; Ruma, D.; Gitika, B.; Sharma, S.K.; Pauline, T.; Ram, M.S.; Ilavazhagan, G.; Sawhney, R.C.; Kumar, D.; Banerjee, P.K.: Antioxidant activities of seabuckthorn (Hippophae rhamnoides) during hypoxia induced oxidative stress in glial cells. Mol. Cell Biochem. 278, 9–14 (2005). https://doi.org/10.1007/s11010-005-7636-2

    Article  Google Scholar 

  15. Teng, B.; Lu, Y.; Wang, Z.; Tao, X.; Wei, D.: In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells. Pharmacol. Res. 54, 186–194 (2006). https://doi.org/10.1016/j.phrs.2006.04.007

    Article  Google Scholar 

  16. Taysi, S.; Gumustekin, K.; Demircan, B.; Aktas, O.; Oztasan, N.; Akcay, F.; Suleyman, H.; Akar, S.; Dane, S.; Gul, M.: Hippophae rhamnoides attenuates nicotine-induced oxidative stress in rat liver. Pharm. Biol. 48, 488–493 (2010). https://doi.org/10.3109/13880200903179707

    Article  Google Scholar 

  17. Veronique, T.; Muk W.Y.; Christian, D.: Seabuckthorn Polyphenols: characterization, bioactivities and associated health benefits. Presented at the February 23 (2022)

  18. Shafi, A.; Hassan, F.; Khanday, F.A.: Reactive oxygen and nitrogen species: oxidative damage and antioxidative defense mechanism in plants under abiotic stress. In: Plant Abiotic Stress Physiology, vol. 1, pp. 71–99 (2022).

  19. Shafi, A.; Hassan, F.; Zahoor, I.; Majeed, U.; Khanday, F.A.: Biodiversity, management and sustainable use of medicinal and aromatic plant resources. In: Medicinal and aromatic plants, pp. 85–111. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  20. Bhat, H.F.; Baba, R.A.; Adams, M.E.; Khanday, F.A.: (2014) Role of SNTA1 in Rac1 activation, modulation of ROS generation, and migratory potential of human breast cancer cells. Br. J. Cancer 110, 706–714 (2014). https://doi.org/10.1038/bjc.2013.723

    Article  Google Scholar 

  21. Bhat, S.S.; Parray, A.A.; Mushtaq, U.; Fazili, K.M.; Khanday, F.A.: Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis. Apoptosis 21, 737–748 (2016). https://doi.org/10.1007/s10495-016-1241-6

    Article  Google Scholar 

  22. Papuc, C.; Diaconescu, C.; Nicorescu, V.; Crivineanu, C.: Antioxidant activity of polyphenols from sea buckthorn fruits (Hippophae rhamnoides). Rev. Chim. 59, 392–394 (2008)

    Article  Google Scholar 

  23. Rahman, M.M.; Islam, M.B.; Biswas, M.; Khurshid, A.H.M.: In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 8, 1–9 (2015). https://doi.org/10.1186/S13104-015-1618-6/TABLES/2

    Article  Google Scholar 

  24. Wang, R.; Zong, S.-X.; Yu, L.-F.; Lu, P.-F.; Luo, Y.-Q.: Rhythms of volatile release from female and male sea buckthorn plants and electrophysiological response of sea buckthorn carpenter moths. J. Plant Interact. 9, 763–774 (2014). https://doi.org/10.1080/17429145.2014.926569

    Article  Google Scholar 

  25. Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł; Nowicka, P.: Anti-oxidant and anti-enzymatic activities of sea buckthorn (Hippophaë rhamnoides L.) fruits modulated by chemical components. Antioxidants 8, 618 (2019). https://doi.org/10.3390/antiox8120618

    Article  Google Scholar 

  26. Guo, R.; Guo, X.; Li, T.; Fu, X.; Liu, R.H.: Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chem. 221, 997–1003 (2017). https://doi.org/10.1016/J.FOODCHEM.2016.11.063

    Article  Google Scholar 

  27. Dulf, F.V.: Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L. subspecies carpatica) cultivars grown in Romania. Chem. Cent. J. (2012). https://doi.org/10.1186/1752-153X-6-106

    Article  Google Scholar 

  28. Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M.: Advanced research on the antioxidant activity and mechanism of polyphenols from Hippophae species—a review. Molecules 25, 917 (2020). https://doi.org/10.3390/molecules25040917

    Article  Google Scholar 

  29. Olas, B.; Skalski, B.; Ulanowska, K.: The anticancer activity of sea buckthorn [Elaeagnus rhamnoides (L.) A. Nelson]. Front. Pharmacol. 9, 232 (2018). https://doi.org/10.3389/FPHAR.2018.00232

    Article  Google Scholar 

  30. Patil, S.G.: [PDF] from greenpharmacy.info Unexplored therapeutic treasure of Himalayan sea buckthorn berry: an opportunity for rejuvenation applications in Ayurveda. Int. J. Green Pharm. (IJGP). 10, (2016)

  31. Li, J.; Wu, R.; Qin, X.; Liu, D.; Lin, F.; Feng, Q.: Isorhamnetin inhibits IL-1β-induced expression of inflammatory mediators in human chondrocytes. Mol. Med. Rep. 16, 4253–4258 (2017). https://doi.org/10.3892/mmr.2017.7041

    Article  Google Scholar 

  32. Ren, Q.; Li, X.; Li, Q.; Yang, H.; Wang, H.; Zhang, H.; Zhao, L.; Jiang-yong, S.; Meng, X.; Zhang, Y.; Shen, X.: Total flavonoids from sea buckthorn ameliorates lipopolysaccharide/cigarette smoke-induced airway inflammation. Phytother. Res. 33, 2102–2117 (2019). https://doi.org/10.1002/ptr.6404

    Article  Google Scholar 

  33. Olas, B.; Kontek, B.; Szczesna, M.; Grabarczyk, L.; Stochmal, A.; Zuchowski, J.: Inhibition of blood platelet adhesion by phenolics’ rich fraction of Hippophae rhamnoides L. fruits. J. Physiol. Pharmacol. 68, 223–229 (2017)

    Google Scholar 

  34. Mulati, A.; Ma, S.; Zhang, H.; Ren, B.; Zhao, B.; Wang, L.; Liu, X.; Zhao, T.; Kamanova, S.; Sair, A.T.; Liu, Z.; Liu, X.: Sea-buckthorn flavonoids alleviate high-fat and high-fructose diet-induced cognitive impairment by inhibiting insulin resistance and neuroinflammation. J. Agric. Food Chem. 68, 5835–5846 (2020). https://doi.org/10.1021/acs.jafc.0c00876

    Article  Google Scholar 

  35. Anbarasu, S.; Radhakrishan, M.: Phtochemical ethnomedicinal and pharmacological potentials of seabuckthorn. Int. J. Pharm. Bio. Sci. 6(3), 263–272 (2015)

    Google Scholar 

  36. Singh, I.P.; Ahmad, F.; Gore, D.D.; Tikoo, K.; Bansal, A.; Jachak, S.M.; Jena, G.: Therapeutic potential of seabuckthorn: a patent review (2000–2018). Expert Opin. Ther Pat. 29, 733–744 (2019). https://doi.org/10.1080/13543776.2019.1648434

    Article  Google Scholar 

  37. Yang, X.; Wang, Q.; Pang, Z.; Pan, M.; Zhang, W.: Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice. Pharm. Biol. 55, 1207–1214 (2017). https://doi.org/10.1080/13880209.2016.1278454

    Article  Google Scholar 

  38. Linderborg, K.M.; Lehtonen, H.-M.; Järvinen, R.; Viitanen, M.; Kallio, H.: The fibres and polyphenols in sea buckthorn (Hippophaë rhamnoides ) extraction residues delay postprandial lipemia. Int. J. Food Sci. Nutr. 63, 483–490 (2012). https://doi.org/10.3109/09637486.2011.636346

    Article  Google Scholar 

  39. Larmo, P.S.; Kangas, A.J.; Soininen, P.; Lehtonen, H.-M.; Suomela, J.-P.; Yang, B.; Viikari, J.; Ala-Korpela, M.; Kallio, H.P.: Effects of sea buckthorn and bilberry on serum metabolites differ according to baseline metabolic profiles in overweight women: a randomized crossover trial. Am. J. Clin. Nutr. 98, 941–951 (2013). https://doi.org/10.3945/ajcn.113.060590

    Article  Google Scholar 

  40. Kedare, S.B.; Singh, R.P.: Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48, 412–422 (2011). https://doi.org/10.1007/s13197-011-0251-1

    Article  Google Scholar 

  41. Cadet, J.; Wagner, J.R.; Shafirovich, V.; Geacintov, N.E.: One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int. J. Radiat. Biol. 90, 423–432 (2014). https://doi.org/10.3109/09553002.2013.877176

    Article  Google Scholar 

  42. Sevgi, K.; Tepe, B.; Sarikurkcu, C.: Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 77, 12–21 (2015). https://doi.org/10.1016/j.fct.2014.12.006

    Article  Google Scholar 

  43. Dai, J.; Mumper, R.J.: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010). https://doi.org/10.3390/MOLECULES15107313

    Article  Google Scholar 

  44. Haminiuk, C.W.I.; Plata-Oviedo, M.S.V.; de Mattos, G.; Carpes, S.T.; Branco, I.G.: Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J. Food Sci. Technol. 51, 2862–2866 (2014). https://doi.org/10.1007/s13197-012-0759-z

    Article  Google Scholar 

  45. Nimse, S.B.; Pal, D.: Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 5, 27986–28006 (2015). https://doi.org/10.1039/C4RA13315C

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdous A. Khanday.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, F., Mir, H., Shafi, A. et al. In Vitro Antioxidant Potential of Hippophae rhamnoides Protects DNA Against H2O2 Induced Oxidative Damage. Arab J Sci Eng 49, 77–85 (2024). https://doi.org/10.1007/s13369-023-08097-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08097-w

Keywords

Navigation