Skip to main content
Log in

Silica and Sulfonated Silica Functionalized Nexar Nanocomposite Membranes for Application in Proton Exchange Membrane Fuel Cell

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Present work demonstrates development and characterization of Nexar-based nanocomposite membranes to evaluate their potential as an alternative to Nafion. Nanocomposite membranes are characterized through XRD, FTIR, SEM, and TGA for crystallinity, surface morphology, functionalities, and thermal stability. Membrane thickness, and protonic resistivity are determined. Modification of Nexar with doped silica and sulfonated silica nanoparticles is checked for water uptake (UR), swelling ratio (SR), ion exchange capacity, proton conductivity at different temperatures, humidity, and activation energies. Incorporating silica and functionalized silica into Nexar drastically changed WU and SR. Proton conductivity improved by 58.8% for sulfonated silica membrane, comparing pristine Nexar. At low humidity, composite membranes showed better proton conductivity than pristine Nexar. Low activation energies supported mainly Grotthus mechanism for proton transport. Thus, present work suggests Nexar-based functionalized nanocomposite membranes owing to higher IEC and less swelling ratio may help higher proton conductivity necessary for PEM fuel cell operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PEM:

Proton exchange membrane

IEC:

Ion exchange capacity

PBC:

Pentablock copolymer

SiO2 :

Silicon dioxide (Silica)

SiO2–SO3H:

Sulfonated silicon dioxide (Silica)

SPAES:

Sulfonated polyarylene ether ketones

SSEBS:

Sulfonated polystyrene ethylene butylene polystyrene

PBI:

Polybenzimidazole

PVDF:

Polyvinylidiene fluoride

WU:

Water uptake

SR:

Swelling ratio

GO:

Graphene oxide

XRD:

X-ray powder diffraction

FTIR:

Fourier transform infrared spectroscopy

SEM:

Scanning electron microscopy

TGA:

Thermogravimetric analysis

NPs:

Nanoparticles

References

  1. Xu, G.; Wu, Z.; Wei, Z.; Zhang, W.; Wu, J.; Li, Y.; Li, J.; Qu, K.; Cai, W.: Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell. Renew. Energy. 153, 935–939 (2020). https://doi.org/10.1016/j.renene.2020.02.056

    Article  Google Scholar 

  2. Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R.: The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 24, 38–50 (2019). https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  3. I.E.A.: The impacts of the Covid 19 crisis on global energy demand and CO2 emissions, Global Energy Review. (2020)

  4. Shaari, N.; Kamarudin, S.K.: Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: an overview. Int. J. Energy Res. 43, 2756–2794 (2019). https://doi.org/10.1002/er.4348

    Article  Google Scholar 

  5. Raduwan, N.F.; Shaari, N.; Kamarudin, S.K.; Masdar, M.S.; Yunus, R.M.: An overview of nanomaterials in fuel cells: synthesis method and application. Int. J. Hydrog. Energy. 47, 18468–18495 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.035

    Article  Google Scholar 

  6. Hussain, M.M.; Dincer, I.; Li, X.: A preliminary life cycle assessment of PEM fuel cell powered automobiles. Appl. Therm. Eng. 27, 2294–2299 (2007). https://doi.org/10.1016/j.applthermaleng.2007.01.015

    Article  Google Scholar 

  7. Luo, Y.; Shi, Y.; Cai, N.: Distributed hybrid system and prospect of the future Energy Internet. In: Reading, L. (Ed.) Hybrid systems and multi-energy networks for the future energy internet, pp. 9–39. Academic Press, Cambridge (2021). https://doi.org/10.1016/B978-0-12-819184-2.00002-X

    Chapter  Google Scholar 

  8. Wang, Y.; Chen, K.S.; Mishler, J.; Chan, S.C.; Cordobes, X.C.: A review of polymer electrolyte membrane fuel cells : technology, applications, and needs on fundamental research. Appl. Energy. 88, 981–1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030

    Article  Google Scholar 

  9. Veziroğlu, T.N.: Foreword. In: Veziroğlu, T.N. (Ed.) PEM fuel cells, pp. 9–10. Elsevier, Hoboken (2013)

    Google Scholar 

  10. Feroldi, D.; Basualdo, M.: Description of PEM fuel cells system. In: Basualdo, M.S.; Feroldi, D.; Outbib, R. (Eds.) PEM fuel cells with bio-ethanol processor systems. Springer, London (2012)

    Google Scholar 

  11. Behling, N.H.: Strengths and weaknesses of major government fuel cell R&D programs. In: Behling, N.H. (Ed.) Fuel Cells, pp. 601–619. Elsevier, Hoboken (2013)

    Chapter  Google Scholar 

  12. Zhang, J.; Zhang, H.; Wu, J.; Zhang, J.: PEM fuel cell fundamentals. In: Zhang, J. (Ed.) PEM fuel cell testing and diagnosis, pp. 1–42. Elsevier, Hoboken (2013)

    Google Scholar 

  13. Wang, Y.; Ruiz Diaz, D.F.; Chen, K.S.; Wang, Z.; Adroher, X.C.: Materials, technological status, and fundamentals of PEM fuel cells—A review. Mater. Today. 32, 178–203 (2020). https://doi.org/10.1016/j.mattod.2019.06.005

    Article  Google Scholar 

  14. Wu, W.; Zhai, C.; Sui, Z.; Sui, Y.; Luo, X.: Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles. Renew. Energy. 178, 560–573 (2021). https://doi.org/10.1016/j.renene.2021.06.098

    Article  Google Scholar 

  15. Yue, M.; Jemei, S.; Zerhouni, N.; Gouriveau, R.: Proton exchange membrane fuel cell system prognostics and decision-making: current status and perspectives. Renew. Energy. 179, 2277–2294 (2021). https://doi.org/10.1016/j.renene.2021.08.045

    Article  Google Scholar 

  16. Trinh, Q.T.; Yang, J.; Lee, J.Y.; Saeys, M.: Computational and experimental study of the volcano behavior of the oxygen reduction activity of PdM@PdPt/C (M = Pt, Ni Co, Fe, and Cr) core–shell electrocatalysts. J. Catal. 291, 26–35 (2012). https://doi.org/10.1016/j.jcat.2012.04.001

    Article  Google Scholar 

  17. Tekalgne, M.A.; Nguyen, K.V.; Nguyen, D.L.T.; Nguyen, V.-H.; Nguyen, T.P.; Vo, D.-V.N.; Trinh, Q.T.; Hasani, A.; Do, H.H.; Lee, T.H.; Jang, H.W.; Le, H.S.; Le, Q.V.; Kim, S.Y.: Hierarchical molybdenum disulfide on carbon nanotube–reduced graphene oxide composite paper as efficient catalysts for hydrogen evolution reaction. J. Alloys Compd. 823, 153897 (2020). https://doi.org/10.1016/j.jallcom.2020.153897

    Article  Google Scholar 

  18. Nihei, M.; Ida, H.; Nibe, T.; Moeljadi, A.M.P.; Trinh, Q.T.; Hirao, H.; Ishizaki, M.; Kurihara, M.; Shiga, T.; Oshio, H.: Ferrihydrite particle encapsulated within a molecular organic cage. J. Am. Chem. Soc. 140, 17753–17759 (2018). https://doi.org/10.1021/jacs.8b10957

    Article  Google Scholar 

  19. Nguyen, V.; Nguyen, T.P.; Le, T.; Vo, D.N.; Nguyen, D.L.; Trinh, Q.T.; Kim, I.T.; Le, Q.V.: Recent advances in two-dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction. J. Chem. Technol. Biotechnol. (2020). https://doi.org/10.1002/jctb.6335

    Article  Google Scholar 

  20. Ansari, K.B.; Banerjee, A.; Hassan, S.Z.; Danish, M.; Arman, I.; Khan, P.; Shakeelur Rahman, A.R.; Ahmad, Q.N.; Trinh, Q.T.: Two-dimensional based hybrid materials for photocatalytic conversion of CO2 into hydrocarbon fuels. In: Sadasivuni, K.K.; Kannan, K.; Abdullah, A.M.; Kumar, B. (Eds.) 2D nanomaterials for CO2 conversion into chemicals and fuels, pp. 270–300. The Royal Society of Chemistry, London (2022)

    Chapter  Google Scholar 

  21. Liu, G.; Narangari, P.R.; Trinh, Q.T.; Tu, W.; Kraft, M.; Tan, H.H.; Jagadish, C.; Choksi, T.S.; Ager, J.W.; Karuturi, S.; Xu, R.: Manipulating intermediates at the Au–TiO2 interface over InP nanopillar array for photoelectrochemical CO2 reduction. ACS Catal. 11, 11416–11428 (2021). https://doi.org/10.1021/acscatal.1c02043

    Article  Google Scholar 

  22. Xu, M.; Xue, H.; Wang, Q.; Jia, L.: Sulfonated poly(arylene ether)s based proton exchange membranes for fuel cells. Int. J. Hydrog. Energy. 46, 31727–31753 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.038

    Article  Google Scholar 

  23. Karimi, M.B.; Mohammadi, F.; Hooshyari, K.: Recent approaches to improve Nafion performance for fuel cell applications: a review. Int. J. Hydrog. Energy. 44, 28919–28938 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.096

    Article  Google Scholar 

  24. Chuy, C.; Basura, V.I.; Simon, E.; Holdcroft, S.; Horsfall, J.; Lovell, K.: V: Electrochemical characterization of ethylenetetrafluoroethylene-g-polystyrenesulfonic acid solid polymer electrolytes. J. Electrochem. Soc. 147, 4453–4458 (2000). https://doi.org/10.1149/1.1394085

    Article  Google Scholar 

  25. Hasani-sadrabadi, M.M.; Mokarram, N.; Azami, M.; Dashtimoghadam, E.; Majedi, F.S.; Jacob, K.I.: Preparation and characterization of nanocomposite polyelectrolyte membranes based on Nafion ionomer and nanocrystalline hydroxyapatite. Polymer (Guildf). 52, 1286–1296 (2011). https://doi.org/10.1016/j.polymer.2010.11.033

    Article  Google Scholar 

  26. Zhang, B.; Cao, Y.; Jiang, S.; Li, Z.; He, G.; Wu, H.: Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity. J. Memb. Sci. 518, 243–253 (2016). https://doi.org/10.1016/j.memsci.2016.07.032

    Article  Google Scholar 

  27. Shao, Z.; Joghee, P.; Hsing, I.: Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J. Memb. Sci. 229, 43–51 (2004). https://doi.org/10.1016/j.memsci.2003.09.014

    Article  Google Scholar 

  28. Lin, C.W.; Lu, Y.S.: Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells. J. Power Sour. 237, 187–194 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.005

    Article  Google Scholar 

  29. Yang, H.N.; Lee, W.H.; Choi, B.S.; Kim, W.J.: Preparation of Nafion/Pt-containing TiO2/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell. J. Memb. Sci. 504, 20–28 (2016). https://doi.org/10.1016/j.memsci.2015.12.021

    Article  Google Scholar 

  30. Tong, X.; Hou, J.; Li, Y.; Li, H.; Wu, W.; Guo, Y.; Liu, Y.; Fu, D.; Huang, X.; Xiong, Z.; Jiang, J.; Qi, L.; Wang, H.; Cai, W.: Application of biochar derived from used cigarette filters in direct carbon solid oxide fuel cell. Int. J. Hydrog. Energy. 47, 22972–22980 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.102

    Article  Google Scholar 

  31. Walkowiak-kulikowska, J.; Wolska, J.; Koroniak, H.: Polymers application in proton exchange membranes for fuel cells (PEMFCs). Phys. Sci. Rev. (2017). https://doi.org/10.1515/psr-2017-0018

    Article  Google Scholar 

  32. Hickner, M.A.; Ghassemi, H.; Kim, Y.S.; Einsla, B.R.; McGrath, J.E.: Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004)

    Article  Google Scholar 

  33. Weiss, R.A.; Sen, A.; Willis, C.L.; Pottick, L.A.: Block copolymer ionomers: 1. Synthesis and physical properties of sulphonated poly(styrene-ethylene/butylene-styrene). Polymer (Guildf). 32, 1867–1874 (1991). https://doi.org/10.1016/0032-3861(91)90378-V

    Article  Google Scholar 

  34. Sannigrahi, A.; Takamuku, S.; Jannasch, P.: Block copolymers combining semi-fluorinated poly(arylene ether) and sulfonated poly(arylene ether sulfone) segments for proton exchange membranes. Int. J. Hydrog. Energy. 39, 15718–15727 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.155

    Article  Google Scholar 

  35. Elabd, Y.A.; Hickner, M.A.: Block copolymers for fuel cells. Macromolecules 44, 1–11 (2011). https://doi.org/10.1021/ma101247c

    Article  Google Scholar 

  36. Lwoya, B.S.; Albert, J.N.L.: Nanostructured block copolymers for proton exchange membrane fuel cells. Energy Environ. Focus. 4, 278–290 (2015). https://doi.org/10.1166/eef.2015.1179

    Article  Google Scholar 

  37. Smitha, B.; Sridhar, S.; Khan, A.A.: Solid polymer electrolyte membranes for fuel cell applications—a review. J. Memb. Sci. 259, 10–26 (2005). https://doi.org/10.1016/j.memsci.2005.01.035

    Article  Google Scholar 

  38. Mistry, M.K.; Roy, N.; Dutta, N.K.; Knott, R.: Inorganic modification of block copolymer for medium temperature proton exchange membrane application. J. Memb. Sci. 351, 168–177 (2010). https://doi.org/10.1016/j.memsci.2010.01.044

    Article  Google Scholar 

  39. Edmondson, C.A.; Fontanella, J.J.; Chung, S.H.; Greenbaum, S.G.; Wnek, G.E.: Complex impedance studies of S-SEBS block polymer proton-conducting membranes. Electrochim. Acta. 46, 1623–1628 (2001). https://doi.org/10.1016/S0013-4686(00)00762-3

    Article  Google Scholar 

  40. Kim, J.; Kim, B.; Jung, B.: Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers. J. Memb. Sci. 207, 129–137 (2002). https://doi.org/10.1016/S0376-7388(02)00138-2

    Article  Google Scholar 

  41. Elabd, Y.A.; Napadensky, E.; Sloan, J.M.; Crawford, D.M.; Walker, C.W.: Triblock copolymer ionomer membranes: part I. Methanol and proton transport. J. Memb. Sci. 217, 227–242 (2003). https://doi.org/10.1016/S0376-7388(03)00127-3

    Article  Google Scholar 

  42. Ghassemi, H.; McGrath, J.E.; Zawodzinski, T.A.: Multiblock sulfonated–fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell. Polymer (Guildf). 47, 4132–4139 (2006). https://doi.org/10.1016/j.polymer.2006.02.038

    Article  Google Scholar 

  43. Shi, Z.; Holdcroft, S.: Synthesis and proton conductivity of partially sulfonated Poly([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) block copolymers. Macromolecules 38, 4193–4201 (2005). https://doi.org/10.1021/ma0477549

    Article  Google Scholar 

  44. Elabd, Y.A.; Napadensky, E.; Walker, C.W.; Winey, K.I.: Transport properties of sulfonated Poly(styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities. Macromolecules 39, 399–407 (2006). https://doi.org/10.1021/ma051958n

    Article  Google Scholar 

  45. Hwang, M.; Nixon, K.; Sun, R.; Willis, C.; Elabd, Y.A.: Sulfonated pentablock terpolymers as membranes and ionomers in hydrogen fuel cells. J. Memb. Sci. 633, 119330 (2021). https://doi.org/10.1016/J.MEMSCI.2021.119330

    Article  Google Scholar 

  46. Huang, F.; Largier, T.D.; Zheng, W.; Cornelius, C.J.: Pentablock copolymer morphology dependent transport and its impact upon film swelling, proton conductivity, hydrogen fuel cell operation, vanadium flow battery function, and electroactive actuator performance. J. Memb. Sci. 545, 1–10 (2018). https://doi.org/10.1016/j.memsci.2017.09.051

    Article  Google Scholar 

  47. Lin, Y.; Yen, C.; Ma, C.M.; Liao, S.; Lee, C.; Hsiao, Y.; Lin, H.: High proton-conducting Nafion ®/–SO3H functionalized mesoporous silica composite membranes. J. Power Sour. 171, 388–395 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.049

    Article  Google Scholar 

  48. Yu, S.; Zuo, X.; Bao, R.; Xu, X.; Wang, J.; Xu, J.: Effect of SiO 2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer (Guildf). 50, 553–559 (2009). https://doi.org/10.1016/j.polymer.2008.11.012

    Article  Google Scholar 

  49. Ying, Y.P.; Kamarudin, S.K.; Masdar, M.S.: Silica-related membranes in fuel cell applications : an overview. Int. J. Hydrog. Energy. 43, 16068–16084 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.171

    Article  Google Scholar 

  50. Su, Y.H.; Liu, Y.L.; Sun, Y.M.; Lai, J.Y.; Wang, D.M.; Gao, Y.; Liu, B.; Guiver, M.D.: Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. J. Memb. Sci. 296, 21–28 (2007). https://doi.org/10.1016/j.memsci.2007.03.007

    Article  Google Scholar 

  51. Pal, S.; Mondal, R.; Chatterjee, U.: Sulfonated polyvinylidene fluoride and functional copolymer based blend proton exchange membrane for fuel cell application and studies on methanol crossover. Renew. Energy. 170, 974–984 (2021). https://doi.org/10.1016/j.renene.2021.02.046

    Article  Google Scholar 

  52. Yagizatli, Y.; Sahin, A.; Ar, I.: Effect of thermal crosslinking process on membrane structure and PEM fuel cell applications performed with SPEEK-PVA blend membranes. Int. J. Hydrog. Energy. (2022). https://doi.org/10.1016/j.ijhydene.2022.04.183

    Article  Google Scholar 

  53. Alnaqbi, H.; Sayed, E.T.; Al-Asheh, S.; Bahaa, A.; Alawadhi, H.; Abdelkareem, M.A.: Current progression in graphene-based membranes for low temperature fuel cells. Int. J. Hydrog. Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.03.255

    Article  Google Scholar 

  54. Teixeira, F.C.; de Sá, A.I.; Teixeira, A.P.S.; Rangel, C.M.: Enhanced proton conductivity of Nafion-azolebisphosphonate membranes for PEM fuel cells. New J. Chem. 43, 15249–15257 (2019). https://doi.org/10.1039/C9NJ03405F

    Article  Google Scholar 

  55. Herz, H.G.; Kreuer, K.D.; Maier, J.; Scharfenberger, G.; Schuster, M.F.H.; Meyer, W.H.: New fully polymeric proton solvents with high proton mobility. Electrochim. Acta. 48, 2165–2171 (2003). https://doi.org/10.1016/S0013-4686(03)00200-7

    Article  Google Scholar 

  56. Duong, P.H.H.; Chung, T.-S.; Wei, S.; Irish, L.: Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil–water separation process. Environ. Sci. Technol. 48, 4537–4545 (2014). https://doi.org/10.1021/es405644u

    Article  Google Scholar 

  57. Shi, G.M.; Zuo, J.; Tang, S.H.; Wei, S.; Chung, T.S.: Layer-by-layer (LbL) polyelectrolyte membrane with NexarTM polymer as a polyanion for pervaporation dehydration of ethanol. Sep. Purif. Technol. 140, 13–22 (2015). https://doi.org/10.1016/j.seppur.2014.11.008

    Article  Google Scholar 

  58. Sivsankaran, A.; Sangeetha, D.; Young-ho, A.: Nanocomposite membranes based on sulfonated polystyrene ethylene butylene polystyrene (SSEBS) and sulfonated SiO2 for microbial fuel cell application. Chem. Eng. J. (2015). https://doi.org/10.1016/j.cej.2015.12.095

    Article  Google Scholar 

  59. Sivasankaran, A.; Sangeetha, D.: Influence of sulfonated SiO2 in sulfonated polyether ether ketone nanocomposite membrane in microbial fuel cell. Fuel 159, 689–696 (2015)

    Article  Google Scholar 

  60. Ke, C.-C.; Li, X.-J.; Shen, Q.; Qu, S.-G.; Shao, Z.-G.; Yi, B.-L.: Investigation on sulfuric acid sulfonation of in-situ sol–gel derived Nafion/SiO2 composite membrane. Int. J. Hydrog. Energy. 36, 3606–3613 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.030

    Article  Google Scholar 

  61. Reddy, K.R.; Lee, K.-P.; Gopalan, A.I.; Kang, H.-D.: Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: Synthesis and characterization. React. Funct. Polym. 67, 943–954 (2007). https://doi.org/10.1016/j.reactfunctpolym.2007.05.023

    Article  Google Scholar 

  62. Yu, D.M.; Yoon, Y.J.; Kim, T.; Lee, J.Y.; Hong, Y.T.: Sulfonated poly (arylene ether sulfone)/ sulfonated zeolite composite membrane for high temperature proton exchange membrane fuel cells. Solid State Ionics 233, 55–61 (2013). https://doi.org/10.1016/j.ssi.2012.12.006

    Article  Google Scholar 

  63. Park, C.H.; Lee, C.H.; Guiver, M.D.; Lee, Y.M.: Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells ( PEMFCs ). Prog. Polym. Sci. 36, 1443–1498 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001

    Article  Google Scholar 

  64. Chien, H.C.; Tsai, L.D.; Huang, C.P.; Kang, C.Y.; Lin, J.N.; Chang, F.C.: Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int. J. Hydrog. Energy. 38, 13792–13801 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.036

    Article  Google Scholar 

  65. Liu, Y.; Wang, J.; Zhang, H.; Ma, C.; Liu, J.; Cao, S.; Zhang, X.: Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. J. Power Sour. 269, 898–911 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.075

    Article  Google Scholar 

  66. Singha, S.; Koyilapu, R.; Dana, K.; Jana, T.: Polybenzimidazole-clay nanocomposite membrane for PEM fuel cell: effect of organomodifier structure. Polymer (Guildf). 167, 13–20 (2019). https://doi.org/10.1016/j.polymer.2019.01.066

    Article  Google Scholar 

  67. Shin, D.W.; Guiver, M.D.; Lee, Y.M.: Hydrocarbon-based polymer electrolyte membranes: importance of morphology on Ion transport and membrane stability. Chem. Rev. 117, 4759–4805 (2017). https://doi.org/10.1021/acs.chemrev.6b00586

    Article  Google Scholar 

  68. Seol, J.; Won, J.; Yoon, K.; Hong, Y.T.; Lee, S.: SiO2 ceramic nanoporous substrate-reinforced sulfonated poly (arylene ether sulfone) composite membranes for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 37, 6189–6198 (2012). https://doi.org/10.1016/j.ijhydene.2011.06.085

    Article  Google Scholar 

  69. Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M.: Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35, 9349–9384 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017

    Article  Google Scholar 

  70. Thiam, H.S.; Daud, W.R.W.; Kamarudin, S.K.; Mohammad, A.B.; Kadhum, A.A.H.; Loh, K.S.; Majlan, E.H.: Overview on nanostructured membrane in fuel cell applications. Int. J. Hydrogen Energy. 36, 3187–3205 (2011). https://doi.org/10.1016/j.ijhydene.2010.11.062

    Article  Google Scholar 

  71. Ghosh, S.; Maity, S.; Jana, T.: Polybenzimidazole/silica nanocomposites : organic-inorganic hybrid membranes for PEM fuel cell. J. Mater. Chem. 21, 14897–14906 (2011). https://doi.org/10.1039/c1jm12169c

    Article  Google Scholar 

  72. Parthiban, V.; Akula, S.; Peera, S.G.; Islam, N.; Sahu, A.K.: Proton conducting nafion-sulfonated graphene hybrid membranes for direct methanol fuel cells with reduced methanol crossover. Energy Fuels 30, 725–734 (2016). https://doi.org/10.1021/acs.energyfuels.5b02194

    Article  Google Scholar 

  73. Novikova, S.A.; Yurkov, G.Y.; Yaroslavtsev, A.B.: Synthesis of copper and silver nanoparticles in MF-4SC and sulfonated poly(ether ether ketone) membranes and transport properties of the composites. Inorg. Mater. 46, 793–798 (2010). https://doi.org/10.1134/S0020168510070198

    Article  Google Scholar 

  74. Vinothkannan, M.; Kim, A.R.; Kumar, G.G.; Yoon, J.; Yoo, D.J.: Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells. RSC Adv. 7, 39034–39048 (2017). https://doi.org/10.1039/c7ra07063b

    Article  Google Scholar 

  75. Ansari, K.B.; Gaikar, V.G.; Trinh, Q.T.; Khan, M.S.; Banerjee, A.; Kanchan, D.R.; Mesfer, M.K.A.; Danish, M.: Carbon dioxide capture over amine functionalized styrene divinylbenzene copolymer: an experimental batch and continuous studies. J. Environ. Chem. Eng. 10, 106910 (2022). https://doi.org/10.1016/j.jece.2021.106910

    Article  Google Scholar 

  76. Amaniampong, P.N.; Trinh, Q.T.; Varghese, J.J.; Behling, R.; Valange, S.; Mushrif, S.H.; Jérôme, F.: Unraveling the mechanism of the oxidation of glycerol to dicarboxylic acids over a sonochemically synthesized copper oxide catalyst. Green Chem. 20, 2730–2741 (2018). https://doi.org/10.1039/C8GC00961A

    Article  Google Scholar 

  77. Amaniampong, P.N.; Trinh, Q.T.; Wang, B.; Borgna, A.; Yang, Y.; Mushrif, S.H.: Biomass oxidation: formyl C–H bond activation by the surface lattice oxygen of regenerative CuO nanoleaves. Angew. Chemie Int. Ed. 54, 8928–8933 (2015). https://doi.org/10.1002/anie.201503916

    Article  Google Scholar 

  78. Amaniampong, P.N.; Trinh, Q.T.; De Oliveira Vigier, K.; Dao, D.Q.; Tran, N.H.; Wang, Y.; Sherburne, M.P.; Jérôme, F.: Synergistic effect of high-frequency ultrasound with cupric oxide catalyst resulting in a selectivity switch in glucose oxidation under argon. J. Am. Chem. Soc. 141, 14772–14779 (2019). https://doi.org/10.1021/jacs.9b06824

    Article  Google Scholar 

  79. Paul, R.; Shit, S.C.; Fovanna, T.; Ferri, D.; Srinivasa Rao, B.; Gunasooriya, G.T.K.K.; Dao, D.Q.; Le, Q.V.; Shown, I.; Sherburne, M.P.; Trinh, Q.T.; Mondal, J.: Realizing catalytic acetophenone hydrodeoxygenation with palladium-equipped porous organic polymers. ACS Appl. Mater. Interfaces 12, 50550–50565 (2020). https://doi.org/10.1021/acsami.0c16680

    Article  Google Scholar 

  80. Paolo, F.: Biomolecular electronics. Elsevier, Hoboken (2014)

    Google Scholar 

  81. Massimiliano, L.F.: Solid oxide-based electrochemical devices. Elsevier, Hoboken (2020)

    Google Scholar 

  82. Ansari, M.Y.; Rizvi, S.J.A.; Inamuddin: Preparation and properties of novel sulfonated pentablock copolymer sPBC membrane for PEM fuel cell. In: Yadav, S.; Singh, D.B.; Arora, P.K.; Kumar, H. (Eds.) Proceedings of international conference in mechanical and energy technology: ICMET 2019 India, pp. 613–621. Springer, Singapore (2020)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge University Sophisticated Instrumentation Facility (USIF) and Department of Chemistry and Department of Physics, Aligarh Muslim University, Aligarh, India.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. A. Rizvi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.Y., Ansari, K.B., Inamuddin et al. Silica and Sulfonated Silica Functionalized Nexar Nanocomposite Membranes for Application in Proton Exchange Membrane Fuel Cell. Arab J Sci Eng 48, 16187–16199 (2023). https://doi.org/10.1007/s13369-023-08085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08085-0

Keywords

Navigation