Skip to main content
Log in

Anaerobic Digestion of Wastewater Sludge for Improved Energy Recovery: Alkaline Pretreatment Impact, Digestate Quality Assessment, and Reactor Design

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Anaerobic digestion of wastewater sludge (WS) has received limited attention worldwide in many wastewater treatment plants (WWTPs). This study investigated the potential of valorizing WS generated from a WWTP in Lebanon for enhanced methane production and digestate recovery. Batch experiments were conducted, and the results showed cumulative methane yields of 0.3403, 0.4179, and 0.4643 Nm3CH4 kgVS−1 for untreated WS, WS + 6% NaOH, and WS + 10% NaOH, respectively. Biochemical characterization of the sludge revealed that the alkaline pretreatment increased methane production volume and kinetics by solubilizing hemicellulose, cellulose, and lignin. The process was scaled up using continuous digesters with an HRT of 30 days and an OLR of 3.56 KgVS m−3 d−1, and it was found that alkaline treatment enhanced WS methane production by about 37% compared to the control. Moreover, the digestate was examined for its quality, and the results showed that the Germination Index (> 60%) and Escherichia coli concentration (3 CFU g−1) were within the appropriate values of international legislation on compost quality, indicating its potential for use in agriculture. Finally, a large-scale digester was designed based on a case study, and calculations showed that it could recover up to 18% of the WWTP’s annual electrical consumption. The study’s outcomes suggest that the anaerobic digestion of WS can be an effective strategy for bioenergy and nutrient recovery in WWTPs and could have broader applications in other countries facing similar challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharma, M., et al.: Wastewater treatment and sludge management strategies for environmental sustainability. In: Stefanakis, A.; Nikolaou, I. (Eds.) Circular Economy and Sustainability, pp. 97–112. Elsevier (2022). https://doi.org/10.1016/B978-0-12-821664-4.00027-3

    Chapter  Google Scholar 

  2. Topal, M.; Arslan Topal, E.I.: Investigation of critical raw materials in sludge of municipal wastewater treatment plant. Arab. J. Sci. Eng. 48(1), 107–115 (2023). https://doi.org/10.1007/s13369-022-07238-x

    Article  Google Scholar 

  3. Agoro, M.A.; Adeniji, A.O.; Adefisoye, M.A.; Okoh, O.O.: Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province, South Africa. Water 12(10), 10 (2020). https://doi.org/10.3390/w12102746

    Article  Google Scholar 

  4. Baby, M.G.; Ahammed, M.M.: Nutrient removal and recovery from wastewater by microbial fuel cell-based systems: a review. Water Sci. Technol. 86(1), 29–55 (2022). https://doi.org/10.2166/wst.2022.196

    Article  Google Scholar 

  5. Al-Gheethi, A.A.; Efaq, A.N.; Bala, J.D.; Norli, I.; Abdel-Monem, M.O.; Ab, M.O.: Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Appl. Water Sci. 8(2), 74 (2018). https://doi.org/10.1007/s13201-018-0698-6

    Article  Google Scholar 

  6. Khawer, M.U.B., et al.: Anaerobic digestion of sewage sludge for biogas & biohydrogen production: State-of-the-art trends and prospects. Fuel 329, 125416 (2022). https://doi.org/10.1016/j.fuel.2022.125416

    Article  Google Scholar 

  7. El Achkar, J.; Rohayem, C.; Salameh, D.; Louka, N.; Maroun, R.; Hobaika, Z.: Olive pomace, a source of green energy using anaerobic digestion. 2018, p. 6. https://doi.org/10.1109/REDEC.2018.8598079

  8. El Achkar, J.; Baydoun, A.; Salameh, D.; Louka, N.; Hobaika, Z.; Maroun, R.: Can coffee grounds be considered as a potential for green energy production? 2018, p. 6. https://doi.org/10.1109/REDEC.2018.8598105

  9. El Achkar, J.H., et al.: Could petroleum sludge be used to produce biomethane as a renewable energy source? Presented at the ADIPEC. OnePetro (2022). https://doi.org/10.2118/210953-MS

    Article  Google Scholar 

  10. El Achkar, J.H.; Ziade, R.; Louka, N.; Maroun, R.G.; Hobaika, Z.: Treatment of dairy waste by anaerobic digestion to produce methane as green energy. In: 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), Jun. 2020, pp. 1–6. https://doi.org/10.1109/REDEC49234.2020.9163848

  11. El Achkar, J.H., et al.: Anaerobic digestion of nine varieties of grape pomace: correlation between biochemical composition and methane production. Biomass Bioenergy 107, 335–344 (2017). https://doi.org/10.1016/j.biombioe.2017.10.030

    Article  Google Scholar 

  12. El Achkar, J.H., et al.: Anaerobic digestion of grape pomace: Biochemical characterization of the fractions and methane production in batch and continuous digesters. Waste Manag. 50, 275–282 (2016). https://doi.org/10.1016/j.wasman.2016.02.028

    Article  Google Scholar 

  13. El Achkar, J.H., et al.: Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. Bioresour. Technol. 247, 881–889 (2018). https://doi.org/10.1016/j.biortech.2017.09.182

    Article  Google Scholar 

  14. El Achkar, J.H., et al.: Anaerobic digestion of grape pomace: Effect of the hydraulic retention time on process performance and fibers degradability. Waste Manag. 71, 137–146 (2018). https://doi.org/10.1016/j.wasman.2017.11.005

    Article  Google Scholar 

  15. Sukkar, K.A.; Al-Zuhairi, F.K.; Dawood, E.A.: Evaluating the influence of temperature and flow rate on biogas production from wood waste via a packed-bed bioreactor. Arab. J. Sci. Eng. 46(7), 6167–6175 (2021). https://doi.org/10.1007/s13369-020-04900-0

    Article  Google Scholar 

  16. Atelge, M.R., et al.: A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 270, 117494 (2020). https://doi.org/10.1016/j.fuel.2020.117494

    Article  Google Scholar 

  17. Khanh Nguyen, V., et al.: Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 285, 119105 (2021). https://doi.org/10.1016/j.fuel.2020.119105

    Article  Google Scholar 

  18. Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G.: Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. Biotechnol. 15(2), 173–211 (2016). https://doi.org/10.1007/s11157-016-9396-8

    Article  Google Scholar 

  19. Yang, G.; Wang, J.: Enhancing biohydrogen production from waste activated sludge disintegrated by sodium citrate. Fuel 258, 116177 (2019). https://doi.org/10.1016/j.fuel.2019.116177

    Article  Google Scholar 

  20. Hameed, S.A., et al.: Microbial population dynamics in temperature-phased anaerobic digestion of municipal wastewater sludge. J. Chem. Technol. Biotechnol. 94(6), 1816–1831 (2019). https://doi.org/10.1002/jctb.5955

    Article  Google Scholar 

  21. Wang, S., et al.: Development of an alkaline/acid pre-treatment and anaerobic digestion (APAD) process for methane generation from waste activated sludge. Sci. Total Environ. 708, 134564 (2020). https://doi.org/10.1016/j.scitotenv.2019.134564

    Article  Google Scholar 

  22. Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014). https://doi.org/10.1016/j.rser.2014.04.047

    Article  Google Scholar 

  23. American Public Health Association, A. D. Eaton, American Water Works Association, and Water Environment Federation, Standard methods for the examination of water and wastewater. Washington, D.C.: APHA-AWWA-WEF, (2005)

  24. Lawlor, K., et al.: Comparison of methods to investigate microbial populations in soils under different agricultural management. FEMS Microbiol. Ecol. 33(2), 129–137 (2000). https://doi.org/10.1111/j.1574-6941.2000.tb00735.x

    Article  Google Scholar 

  25. editors E. W. R. B. B. D. E. S. Clesceri, Standard Methods for the Examination of Water and Wastewater, 22nd Edition, 22nd edition. Washington (D.C.): American Water Works Association, 2012.

  26. Hoekstra, N.J.; Bosker, T.; Lantinga, E.A.: Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.). Agric. Ecosyst. Environ. 93(1), 189–196 (2002). https://doi.org/10.1016/S0167-8809(01)00348-6

    Article  Google Scholar 

  27. Angelidaki, I., et al.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59(5), 927–934 (2009). https://doi.org/10.2166/wst.2009.040

    Article  Google Scholar 

  28. Ghaleb, A.A.S., et al.: Response surface methodology to optimize methane production from mesophilic anaerobic co-digestion of oily-biological sludge and sugarcane bagasse. Sustainability 12(5), 5 (2020). https://doi.org/10.3390/su12052116

    Article  MathSciNet  Google Scholar 

  29. Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E.: A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies 12(6), 6 (2019). https://doi.org/10.3390/en12061106

    Article  Google Scholar 

  30. Sills, D.L.; Gossett, J.M.: Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass. Bioresour. Technol. 102(2), 1389–1398 (2011). https://doi.org/10.1016/j.biortech.2010.09.035

    Article  Google Scholar 

  31. Hendriks, A.T.W.M.; Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100(1), 10–18 (2009). https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  32. Chen, X.; Gu, Y.; Zhou, X.; Zhang, Y.: Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment. Bioresour. Technol. 164, 78–85 (2014). https://doi.org/10.1016/j.biortech.2014.04.070

    Article  Google Scholar 

  33. Xie, S.; Frost, J.P.; Lawlor, P.G.; Wu, G.; Zhan, X.: Effects of thermo-chemical pre-treatment of grass silage on methane production by anaerobic digestion. Bioresour. Technol. 102(19), 8748–8755 (2011). https://doi.org/10.1016/j.biortech.2011.07.078

    Article  Google Scholar 

  34. Monlau, F.; Barakat, A.; Steyer, J.P.; Carrere, H.: Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour. Technol. 120, 241–247 (2012). https://doi.org/10.1016/j.biortech.2012.06.040

    Article  Google Scholar 

  35. Peyrelasse, C.; Barakat, A.; Lagnet, C.; Kaparaju, P.; Monlau, F.: Anaerobic digestion of wastewater sludge and alkaline-pretreated wheat straw at semi-continuous pilot scale: performances and energy assessment. Energies 14(17), 17 (2021). https://doi.org/10.3390/en14175391

    Article  Google Scholar 

  36. Peyrelasse, C.; Kaparaju, P.; Lallement, A.; Marques, M.; Monlau, F.: Reduction of the environmental footprint of thermo-alkali pretreatment by reusing black liquor during anaerobic digestion of lignocellulosic biomasses. Biofuels Bioprod. Biorefining 15(3), 657–670 (2021). https://doi.org/10.1002/bbb.2208

    Article  Google Scholar 

  37. Yadvika, S.; Sreekrishnan, T.R.; Kohli, S.; Rana, V.: Enhancement of biogas production from solid substrates using different techniques––a review. Bioresour. Technol. 95(1), 1–10 (2004). https://doi.org/10.1016/j.biortech.2004.02.010

    Article  Google Scholar 

  38. Callaghan, F.J.; Wase, D.A.J.; Thayanithy, K.; Forster, C.F.: Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 22(1), 71–77 (2002). https://doi.org/10.1016/S0961-9534(01)00057-5

    Article  Google Scholar 

  39. Ahring, B.K.; Sandberg, M.; Angelidaki, I.: Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl. Microbiol. Biotechnol. 43(3), 559–565 (1995). https://doi.org/10.1007/BF00218466

    Article  Google Scholar 

  40. Vavilin, V.A.; Rytov, S.V.; Lokshina, L.Y.: A balance between hydrolysis and methanogenesis during the anaerobic digestion of organic matter. Microbiology 66(6), 712–717 (1997)

    Google Scholar 

  41. Di Girolamo, G.; Bertin, L.; Capecchi, L.; Ciavatta, C.; Barbanti, L.: Mild alkaline pre-treatments loosen fibre structure enhancing methane production from biomass crops and residues. Biomass Bioenergy 71, 318–329 (2014). https://doi.org/10.1016/j.biombioe.2014.09.025

    Article  Google Scholar 

  42. Kafle, G.K.; Kim, S.H.: Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation. Appl. Energy 103, 61–72 (2013). https://doi.org/10.1016/j.apenergy.2012.10.018

    Article  Google Scholar 

  43. Sambusiti, C.; Ficara, E.; Malpei, F.; Steyer, J.P.; Carrère, H.: Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production. Bioresour. Technol. 144, 149–155 (2013). https://doi.org/10.1016/j.biortech.2013.06.095

    Article  Google Scholar 

  44. Cieślik, B.M.; Namieśnik, J.; Konieczka, P.: Review of sewage sludge management: standards, regulations and analytical methods. J. Clean. Prod. 90, 1–15 (2015). https://doi.org/10.1016/j.jclepro.2014.11.031

    Article  Google Scholar 

  45. Wainaina, S., et al.: Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour. Technol. 301, 122778 (2020). https://doi.org/10.1016/j.biortech.2020.122778

    Article  Google Scholar 

  46. Elalami, D.; Carrere, H.; Monlau, F.; Abdelouahdi, K.; Oukarroum, A.; Barakat, A.: Pretreatment and co-digestion of wastewater sludge for biogas production: recent research advances and trends. Renew. Sustain. Energy Rev. 114, 109287 (2019). https://doi.org/10.1016/j.rser.2019.109287

    Article  Google Scholar 

  47. Misson, G.; Mainardis, M.; Incerti, G.; Goi, D.; Peressotti, A.: Preliminary evaluation of potential methane production from anaerobic digestion of beach-cast seagrass wrack: the case study of high-adriatic coast. J. Clean. Prod. 254, 120131 (2020). https://doi.org/10.1016/j.jclepro.2020.120131

    Article  Google Scholar 

  48. Fytili, D.; Zabaniotou, A.: Utilization of sewage sludge in EU application of old and new methods—a review. Renew. Sustain. Energy Rev. 12(1), 116–140 (2008). https://doi.org/10.1016/j.rser.2006.05.014

    Article  Google Scholar 

  49. Nafez, A.H.; Nikaeen, M.; Kadkhodaie, S.; Hatamzadeh, M.; Moghim, S.: Sewage sludge composting: quality assessment for agricultural application. Environ. Monit. Assess. 187(11), 709 (2015). https://doi.org/10.1007/s10661-015-4940-5

    Article  Google Scholar 

  50. Wang, P.; Changa, C.M.; Watson, M.E.; Dick, W.A.; Chen, Y.; Hoitink, H.A.J.: Maturity indices for composted dairy and pig manures. Soil Biol. Biochem. 36(5), 767–776 (2004). https://doi.org/10.1016/j.soilbio.2003.12.012

    Article  Google Scholar 

  51. Saveyn, H.; Eder, P.: End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): Technical proposals. JRC Publications Repository, Jan. 14, 2014. https://publicationstest.jrc.cec.eu.int/repository/handle/JRC87124. Accessed 01 Mar 2023

  52. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 (Text with EEA relevance)Text with EEA relevance. 2022. Accessed: Mar. 01, 2023. [Online]. Available: http://data.europa.eu/eli/reg/2019/1009/2022-10-03/eng

  53. Andreoli, C.V.; von Sperling, M.; Fernandes, F.: Sludge Treatment and Disposal. IWA Publishing (2007) https://doi.org/10.2166/9781780402130

    Book  Google Scholar 

  54. Turovskiy, I.S.; Mathai, P.K.: Wastewater Sludge Processing. Wiley, Berlin (2006)

    Book  Google Scholar 

  55. Li, H.; Jin, C.; Zhang, Z.; O’Hara, I.; Mundree, S.: Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways. Energy 126, 649–657 (2017). https://doi.org/10.1016/j.energy.2017.03.068

    Article  Google Scholar 

  56. "Progressive Cavity Pumps: Slurry, Paste Pumping," Flowrox, 2020. https://flowrox.com/product/progressive-cavity-pumps/. Accessed 08 Dec 2021

  57. Singh, B.; Szamosi, Z.; Siménfalvi, Z.: Impact of mixing intensity and duration on biogas production in an anaerobic digester: a review. Crit. Rev. Biotechnol. 40(4), 508–521 (2020). https://doi.org/10.1080/07388551.2020.1731413

    Article  Google Scholar 

  58. "Fuel Gases - Heating Values," 2005. https://www.engineeringtoolbox.com/heating-values-fuel-gases-d_823.html. Accessed 09 Dec 2021

  59. Zallaya, S.; El Achkar, J.H.; Chacra, A.A.; Shatila, S.; El Akhdar, J.; Daher, Y.: Steam gasification modeling of polyethylene (PE) and polyethylene terephthalate (PET) wastes: a case study. Chem. Eng. Sci. 267, 118340 (2023). https://doi.org/10.1016/j.ces.2022.118340

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean H. El Achkar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Achkar, J.H., El Joauhari, A., Nassreddine, C. et al. Anaerobic Digestion of Wastewater Sludge for Improved Energy Recovery: Alkaline Pretreatment Impact, Digestate Quality Assessment, and Reactor Design. Arab J Sci Eng 48, 16109–16121 (2023). https://doi.org/10.1007/s13369-023-08068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08068-1

Keywords

Navigation