Skip to main content
Log in

The Effect of Ionic Liquids Incorporation on the Self-healing Behavior of the Bitumen

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the asphalt pavements, which are prepared by mixing bitumen and aggregates, fatigue cracking and thermal cracking failure occur due to continuous loading and climate conditions. Extending the life of asphalt pavements is very important from an environmental and economic point of view. In this study, reactions are conducted to investigate the effects of six ionic liquids (IL) with different side-chain lengths on the self-healing properties of bitumen. Thermogravimetric analysis and differential scanning calorimetry analysis are performed for ionic liquid characterization, while for bitumen characterization, Saturates, Aromatics, Resins, Asphaltenes (SARA) fractionation of bitumen and Gel Permeation Chromatography, Nuclear Magnetic Resonance, Elemental Analysis of these sub-fractions were performed. In addition, two new test methods have been developed to measure the self-healing capacity of bitumen. The first method shows the effects of rest times when intermittent loading is applied to the sample at high temperatures, while the other method was developed to demonstrate the self-healing ability of bitumen at low temperatures with long rest periods. Stripping tests, asphalt fatigue tests and zeta potential measurements are done to investigate the effects of ionic liquids on bitumen and aggregate interactions. The results indicated that different ionic liquids have different effects on asphalt self-healing mechanism. IL improved the self-healing performance of asphalt 40% at high temperatures, and 100% at low temperature while stripping properties 25% and asphalt fatigue life 20% improved. Therefore, it can be concluded that different bitumen-IL modification recipes could be used for self-healing of asphalt pavements, depending on climatic conditions and traffic density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. EAPA, Asphalt in Figures 2018. 2020

  2. Baumann, B.: Polarization sensitive optical coherence tomography: a review of technology and applications. Appl. Sci. 7, 474 (2017). https://doi.org/10.3390/app7050474

    Article  Google Scholar 

  3. OECD: Infrastructure maintenance (indicator) (2023). https://doi.org/10.1787/c73dc965-en

  4. Rubio, M.C.; Moreno, F.; Martinez-Echevarria, M.J.; Martinez, G.; Vazquez, J.M.: Comparative analysis of emissions from the manufacture and use of hot and half-warm mix asphalt. J. Clean. Prod. 41, 1–6 (2013). https://doi.org/10.1016/j.jclepro.2012.09.036

    Article  Google Scholar 

  5. Behnood, A.; Gharehveran, M.M.: Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 112, 766–791 (2019)

    Article  Google Scholar 

  6. Airey, G.D.: Styrene butadiene styrene polymer modification of road bitumens. J. Mater. Sci. 39, 951–959 (2004). https://doi.org/10.1023/B:JMSC.0000012927.00747.83

    Article  Google Scholar 

  7. http://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/scratch.html (Access year 2017).

  8. Kumar, M.H.; Moganapriya, C.; Kumar, A.M.; Rajasekar, R.; Gobinath, V.K.: Self-healing materials in aerospace applications. Self-Heal. Smart Mater. Allied Appl. (2021). https://doi.org/10.1016/B978-0-08-100037-3.00011-0

    Article  Google Scholar 

  9. Khan, N.I.; Halder, S.: Self-healing fiber-reinforced polymer composites for their potential structural applications. In: Thomas, S.; Surendran, A. (Eds.) Self-Healing Polymer-Based Systems, pp. 455–472. Elsevier, New York (2020)

    Chapter  Google Scholar 

  10. Phillips, M.C. Multi- step models for fatigue and healing, and binder properties involved in healing. in Eurobitume Workshop on Performance Related Properties for Bituminous Binders 1998. Luxemburg (Paper Number 115). DOI:https://doi.org/10.1617/2912143772.051

  11. Raithby, K.D.; Sterling, A.B.: The effect of rest periods on the fatigue performance of a hot-rolled asphalt under reversed axial loading. Assoc Asphalt Paving Technol Proc 39, 134–152 (1970)

    Google Scholar 

  12. Shen, S.; Chiu, H.; Huang, H.: Characterization of fatigue and healing in asphalt binders. J. Mater. Civ. Eng. 22(9), 846–852 (2010). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000080

    Article  Google Scholar 

  13. Little, D.N., Lytton, R.L., Williams, A.D., Chen, C.W.: Microdamage Healing in Asphalt and Asphalt Concrete”, Volume I: “Microdamage and Microdamage Healing, Project Summary Report, in Publication No: FHWA-RD-98–1412001, Texas Transportation Institution, College Station: Texas

  14. Little, K.Y.; Lytton, R.: Fatigue and healing characterization of asphalt mixtures. J. Mater. Civ. Eng. 15(1), 75–83 (2003). https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(75)

    Article  Google Scholar 

  15. Daniel, J.S.; Kim, Y.R.: Laboratory evaluation of fatigue damage and healing of asphalt mixtures. J. Mater. Civil Eng. 13, 434–440 (2001). https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(434)

    Article  Google Scholar 

  16. Brochu, A.B.; Craig, S.L.; Reichert, W.M.: Self-healing biomaterials. J. Biomed. Mater. Res. Part A 96(2), 492–506 (2011)

    Article  Google Scholar 

  17. Behnia, B.; Reis, H.: Self-healing of thermal cracks in asphalt pavements. Constr. Build. Mater. 218, 316–322 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.095

    Article  Google Scholar 

  18. Kim, Y.R.; Little, D.N.; Lytton, R.L.: Use of dynamic mechanical analysis (DMA) to evaluate the fatigue and healing potential of asphalt binders in sand asphalt mixtures. J. Assoc. Asphalt Paving Technol. 71, 176–199 (2002)

    Google Scholar 

  19. Garcia, A.; Schlangen, E.; van de Ven, M.; Liu, Q.: Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Constr. Build. Mater. 23, 3175–3181 (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.014

    Article  Google Scholar 

  20. Garcia, A.; Schlangen, E.; van de Ven, M.; van Vliet, D.: Induction heating of mastic containing conductive fibers and fillers. Mater. Struct. 44, 499–508 (2011). https://doi.org/10.1617/s11527-010-9644-2

    Article  Google Scholar 

  21. Greenwood, R.; Kendall, K.: Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. J. Eur. Ceram. Soc. 19, 479–488 (1999). https://doi.org/10.1016/S0955-2219(98)00208-8

    Article  Google Scholar 

  22. Liu, Q.; Wu, S.; Schlangen, E.: Induction heating of asphalt mastic for crack control. Constr. Build. Mater. 41, 345–351 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.075

    Article  Google Scholar 

  23. Zhang, W.; Jiang, H.; Chang, Z., et al.: Recent achievements in self-healing materials based on ionic liquids: a review. J Mater Sci. 55, 13543–13558 (2020). https://doi.org/10.1007/s10853-020-04981-0

    Article  Google Scholar 

  24. Tourvieille, J.N.; Larachi, F.; Duchesne, C.; Chen, J.: NIR hyperspectral investigation of extraction kinetics of ionic-liquid assisted bitumen extraction. Chem. Eng. J. 308, 1185–1199 (2017). https://doi.org/10.1016/j.cej.2016.10.010

    Article  Google Scholar 

  25. Liu, Q.; Garcia, A.; Schlangen, E.; van de Ven, M.: Induction healing of asphalt mastic and porous asphalt concrete. Constr. Build. Mater. 25, 3746–3752 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.016

    Article  Google Scholar 

  26. Gallego, J.; del Val, M.A.; Contreras, V.; Paez, A.: Heating asphalt mixtures with microwaves to promote self-healing. Constr. Build. Mater. 42, 1–4 (2013). https://doi.org/10.1016/j.conbuildmat.2012.12.007

    Article  Google Scholar 

  27. White, S.R.; Sottos, N.R.; Geubell, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S.: Autonomic healing of polymer composites. Nature 409, 794–797 (2001)

    Article  Google Scholar 

  28. Su, J.F., Qiu, J., Schlangen, E.: Self-healing bitumen by microcapsules containing rejuvenator, in ICSHM 20132013: Gent. p. 494–497. https://doi.org/10.1038/35057232

  29. Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E.: Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36, 230–235 (2010). https://doi.org/10.1016/j.ecoleng.2008.12.036

    Article  Google Scholar 

  30. Wiktor, V.; Jonkers, H.M.: Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement Concr. Compos. 33, 763–770 (2011). https://doi.org/10.1016/j.cemconcomp.2011.03.012

    Article  Google Scholar 

  31. Olivier- Bourbigou, H.; Magna, L.: (2002) Ionic liquids: perspectives for organic and catalytic reactions. J. Mol. Catalysis A: Chem. 182–183, 419–437 (2002). https://doi.org/10.1016/S1381-1169(01)00465-4

    Article  Google Scholar 

  32. Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Tech. Biotechnol. 1997(68), 351–356 (1997)

    Article  Google Scholar 

  33. Vekariya, R.L.: A review of ionic liquids: applications towards catalytic organic transformations. J. Mol. Liq. 227, 44–60 (2017). https://doi.org/10.1016/j.molliq.2016.11.123

    Article  Google Scholar 

  34. Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G.: Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8(4), 325 (2006). https://doi.org/10.1039/B601395C

    Article  Google Scholar 

  35. Frade, R.F.M.; Afonso, C.A.M.: Impact of ionic liquids in environment and humans: an overview. Hum. Exp. Toxicol. 29(12), 1038–1054 (2010). https://doi.org/10.1177/0960327110371259

    Article  Google Scholar 

  36. Painter, P.; Williams, P.; Mannebach, E.: Recovery of bitumen from oil or tar sands using ionic liquids. Energy Fuels 24(2), 1094–1098 (2010). https://doi.org/10.1021/ef9009586

    Article  Google Scholar 

  37. Gaestel, C.; Smadja, R.; Lamminan, K.A.: Contribution à la connaissance des propriétés des bitumes routiers. Revue Générale Routes Aérodromes 466, 85–92 (1971)

    Google Scholar 

  38. Spiecker, P.W.; Gawrys, K.L.; Kilpatrick, P.K.: Aggregation and solubility behavior of asphaltenes and their subfractions. J. Colloid Interface Sci. 267, 178–193 (2003). https://doi.org/10.1016/s0021-9797(03)00641-6

    Article  Google Scholar 

  39. Akmaz, S.; Iscan, O.; Gurkaynak, M.A.; Yasar, M.: The structural characterization of saturate, aromatic, resin, and asphaltene fractions of batiraman crude oil. Pet. Sci. Technol. 29(2), 160–171 (2011). https://doi.org/10.1080/10916460903330361

    Article  Google Scholar 

Download references

Acknowledgements

Scientific and Technological Research Council of Turkey (TUBITAK) is greatly acknowledged for their support via the funding program of TEYDEB 1509 and a project number of 9120064. Turkish Petroleum Refineries Corporation, TÜPRAŞ, also is greatly acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffer Yasar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arca, S., Gurdal, S., Caniaz, R.O. et al. The Effect of Ionic Liquids Incorporation on the Self-healing Behavior of the Bitumen. Arab J Sci Eng 49, 299–309 (2024). https://doi.org/10.1007/s13369-023-08060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08060-9

Keywords

Navigation