Skip to main content

Advertisement

Log in

Estimation of Porosity Effect on Mechanical Properties in Calcium Phosphate Cement Reinforced by Strontium Nitrate Nanoparticles: Fabrication and FEM Analysis

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nowadays, the design of porous bone scaffolds represents a crucial issue in orthopedical applications. In this article, the mechanical properties of a multi-component scaffold with different porosity percentages were investigated. Mori–Tanaka equations were used to estimate various properties of calcium phosphate (CaP) bone cement reinforced by strontium nitrate nanoparticles (NPs) based on porosity percentages in both cases; before and after samples placement in simulated body fluid (SBF) solution. With the support of these equations, the mechanical properties of bone cement material without porosity were estimated to be used in finite element analysis (FEA); so then to assess structural stability and stress distribution, the experimental compression tests on the scaffold were simulated with the ABAQUS engineering package. The mechanical properties observation indicates that the grain and particle size increased by nitrate addition to the bone cement. The approach in this manuscript allows quantifying the effect of porosity on mechanical properties of CaP cements reinforced by the strontium nitrate NPs, to be fabricated based on the patient's needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hashemi, S.A.; Esmaeili, S.; Ghadirinejad, M.; Saber-Samandari, S.; Sheikhbahaei, E.; Kordjamshidi, A.; Khandan, A.: Micro-finite element model to investigate the mechanical stimuli in scaffolds fabricated via space holder technique for cancellous bone. ADMT J 13(1), 51–58 (2020)

    Google Scholar 

  2. Karageorgiou, V.; Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27), 5474–5491 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Zindani, D.; Kumar, K.: An insight into additive manufacturing of fiber reinforced polymer composite. Int J Lightweight Mater Manufact 2(4), 267–278 (2019)

    Google Scholar 

  4. Yang, X.; Tang, Q.; Lai, C.; Wu, K.; Shi, X.: Applications and prospects of microfluidic chips in orthopaedic diseases. Front. Mater. 7, 443 (2021)

    Article  ADS  Google Scholar 

  5. de Oliveira Renó, C.; Pereta, N.C.; Bertran, C.A.; Motisuke, M.; de Sousa, E.: Study of in vitro degradation of brushite cements scaffolds. J. Mater. Sci. Mater. Med. 25(10), 2297–2303 (2014)

    Article  PubMed  Google Scholar 

  6. Lode, A.; Heiss, C.; Knapp, G.; Thomas, J.; Nies, B.; Gelinsky, M.; Schumacher, M.: Strontium-modified premixed calcium phosphate cements for the therapy of osteoporotic bone defects. Acta Biomater. 65, 475–485 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. Klammert, U.; Reuther, T.; Jahn, C.; Kraski, B.; Kübler, A.C.; Gbureck, U.: Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater. 5(2), 727–734 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. Ewald, A.; Hösel, D.; Patel, S.; Grover, L.M.; Barralet, J.E.; Gbureck, U.: Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomater. 7(11), 4064–4070 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Rogina, A.; Rico, P.; Ferrer, G.G.; Ivanković, M.; Ivanković, H.: Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. Eur. Polymer J. 68, 278–287 (2015)

    Article  CAS  Google Scholar 

  10. Ivankovic, H.; Tkalcec, E.; Orlic, S.; Ferrer, G.G.; Schauperl, Z.: Hydroxyapatite formation from cuttlefish bones: kinetics. J. Mater. Sci. Mater. Med. 21(10), 2711–2722 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. Al-dujaili, M.A.A.; Jaheel, S.; Abbas, H.N.: Preparation of HA/β-TCP scaffold and mechanical strength optimization using a genetic algorithm method. J. Aust. Ceram. Soc. 53(1), 41–48 (2017)

    Article  Google Scholar 

  12. Vahabzadeh, S.; Roy, M.; Bose, S.: Effects of silicon on osteoclast cell mediated degradation, in vivo osteogenesis and vasculogenesis of brushite cement. J. Mater. Chem. B 3(46), 8973–8982 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rezvan F.; Mohamad .; Majid K.: Improving the mechanical properties of strontium nitrate doped dicalcium phosphate cement nanoparticles for bone repair application. Ceram. Int. 47(10 Part A), 14151–14159 (2021).

  14. Ewald, A.; Helmschrott, K.; Knebl, G.; Mehrban, N.; Grover, L.M.; Gbureck, U.: Effect of cold-setting calcium-and magnesium phosphate matrices on protein expression in osteoblastic cells. J. Biomed. Mater. Res. B Appl. Biomater. 96(2), 326–332 (2011)

    Article  PubMed  Google Scholar 

  15. Salami, M.A.; Kaveian, F.; Rafienia, M.; Saber-Samandari, S.; Khandan, A.; Naeimi, M.: Electrospun polycaprolactone/lignin-based nanocomposite as a novel tissue scaffold for biomedical applications. J. Med. Signals Sensors 7(4), 228 (2017)

    Article  Google Scholar 

  16. Yongbin, Y.: Seyed Amin Bagherzadeh, Hamidreza Azimy, Mohammad Akbari, Arash Karimipour, Comparison of the artificial neural network model prediction and the experimental results for cutting region temperature and surface roughness in laser cutting of AL6061T6 alloy. Infrared Phys. Technol. 108, 103364 (2020)

    Article  Google Scholar 

  17. Khalid, H.; Almitani, .H.: Abu-Hamdeh, S. E.; Ali, A.; Aysan S. G.; Ali G.: Effects of surfactant on thermal conductivity of aqueous silica nanofluids. J. Molec. Liquids 327, 114883 (2021)

    Article  Google Scholar 

  18. Mohammed S. K.; Ferenc L.; Ali, A.; Mohsen, I.: Amelioration of pool boiling thermal performance in case of using a new hybrid nanofluid. Case Stud. Thermal Eng. 24, 100872 (2021)

    Article  Google Scholar 

  19. Tian, Z.; Bagherzadeh, S.A.; Ghani, K.; Karimipour, A.; Abdollahi, A.; Bahrami, M.; Safaei, M.R.: Nonlinear function estimation fuzzy system (NFEFS) as a novel statistical approach to estimate nanofluids’ thermal conductivity according to empirical data. Int. J. Numer. Meth. Heat Fluid Flow 30(6), 3267–3281 (2020)

    Article  Google Scholar 

  20. Xiaohong, D.; Huajiang, C.; Seyed, A. B.; Masoud, S.; Mohammad, A.: Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method. Phys. A 537, 122782 (2020)

    Article  Google Scholar 

  21. Shahshahani, S.; Shahgholi, M.; Karimipour, A.: The thermal performance and mechanical stability of methacrylic acid porous hydrogels in an aqueous medium at different initial temperatures and hydrogel volume fraction using the molecular dynamics simulation. J. Mol. Liq. 382, 122001 (2023)

    Article  CAS  Google Scholar 

  22. Ehsan R.; Masoud, A.; Ali, A.: Influence of magnetic field on boiling heat transfer coefficient of a magnetic nanofluid consisting of cobalt oxide and deionized water in nucleate regime: An experimental study. Int. J. Heat Mass Transfer, 165(Part A), 120669 (2021).

  23. Shojaei, S.; Shahgholi, M.; Karimipour, A.: The effects of atomic percentage and size of Zinc nanoparticles, and atomic porosity on thermal and mechanical properties of reinforced calcium phosphate cement by molecular dynamics simulation. J. Mech. Behav. Biomed. Mater. 141, 105785 (2023)

    Article  CAS  PubMed  Google Scholar 

  24. Anh, V.T.T.; Huong, V.T.; Nguyen, P.D.; Duc, N.D.: Nonlinear dynamic analysis of porous graphene platelet-reinforced composite sandwich shallow spherical shells. Mech. Compos. Mater. 57(5), 609–622 (2021)

    Article  CAS  ADS  Google Scholar 

  25. Duc, N.D.: Nonlinear static and dynamic stability of functionally graded plates and shells. Vietnam National University Press, Hanoi (2014)

    Google Scholar 

  26. Duc, N.D.; Quang, V.D.; Nguyen, P.D.; Chien, T.M.: Nonlinear dynamic response of FGM porous plates on elastic foundation subjected to thermal and mechanical loads using the first order shear deformation theory. J. Appl. Comput. Mech. 4(4), 245–259 (2018)

    Google Scholar 

  27. Chan, D.Q.; Thanh, N.V.; Khoa, N.D.; Duc, N.D.: Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments. Thin Walled Struct. 154, 106837 (2020)

    Article  Google Scholar 

  28. Quan, T.Q.; Ha, D.T.T.; Duc, N.D.: Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading. Thin Walled Struct. 170, 108606 (2022)

    Article  Google Scholar 

  29. Dat, N.D.; Thanh, N.V.; Anh, V.M.; Duc, N.D.: Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer. J. Mech. Adv. Mater. Struct. 29(10), 1431–1448 (2022)

    Article  CAS  Google Scholar 

  30. Dat, N. D.; Quan T. Q.; Duc, N.D.: Nonlinear thermal dynamic buckling and global optimization of smart sandwich plate with porous homogeneous core and carbon nanotube reinforced nanocomposite layers. J. Eur. J. Mech. A/Solids, 90, 104351 (2021).

  31. Cong, P.H.; Chien, T.M.; Khoa, N.D.; Duc, N.D.: Nonlinear thermo-mechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. J. Aerospace Sci. Technol. 77, 419–428 (2018)

    Article  Google Scholar 

  32. Quang, V.D.; Khoa, N.D.; Duc, N.D.: The effect of structural characteristics and external conditions on the dynamic behavior of shear deformable FGM porous plates in thermal environment. J. Mech. Sci. Technol. 35(8), 2021 (2021)

    Article  Google Scholar 

  33. Mori, T.; Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Shahgholi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fada, R., Shahgholi, M., Azimi, R. et al. Estimation of Porosity Effect on Mechanical Properties in Calcium Phosphate Cement Reinforced by Strontium Nitrate Nanoparticles: Fabrication and FEM Analysis. Arab J Sci Eng 49, 1815–1825 (2024). https://doi.org/10.1007/s13369-023-08050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08050-x

Keywords

Navigation