Skip to main content
Log in

Synchronous Reluctance Motor Performance Improvement Using a Seven-Level and Nine-Level Inverter Topologies

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, synchronous reluctance motors have had a resurgence of benefit for many applications in the industry because of their simple framework, high effectiveness, low manufacturing cost, and high robustness. This research presents two inverter neutral-point-clamped topologies to improve the vector-controlled SynRM; these topologies offer interesting characteristics compared to the conventional structure-based two-level inverter. To get an inverter smooth switch command sequence, pulse width modulation has been modified to be adapted to the new topologies. The goal is to produce an output voltage vector which approaches the reference voltage vector as closely as possible. As a result, and contrary to the two-level inverter, that can only supply eight voltage vectors, the seven-level inverter can produce one 127 voltage vectors, and the nine-level inverter can produce 255 voltage vectors. Besides, an anti-windup structure is used in the speed loop regulation to ensure robust control with less static error. A comparison is done between the proposed techniques-based multilevel inverters and the conventional technique-based two-level inverter. Satisfactory results have been got by numerical simulation using MATLAB/Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. George, M.A.; Kamat, D.V.; Kurian, C.P.: Electric vehicle speed tracking control using an ANFIS-based fractional order PID controller. J. King Saud Univ.-Eng. Sci. (2022). https://doi.org/10.1016/j.jksues.2022.01.001

    Article  Google Scholar 

  2. El-Refaie, A.; Osama, M.: High specific power electrical machines: a system perspective. CES Trans. Electr. Mach. Syst. 3(1), 88–93 (2019). https://doi.org/10.30941/CESTEMS.2019.00012

    Article  Google Scholar 

  3. Gryzlov, A.A.; Kurnaev, A.V.; Grigorev, M.A.: New approaches to designing of electrical machines for modern controlled AC electric drives. Russ. Electr. Eng. 91(7), 452–456 (2020). https://doi.org/10.3103/S106837122007007X

    Article  Google Scholar 

  4. Heidari, H.; Rassõlkin, A.; Kallaste, A.; Vaimann, T.; Andriushchenko, E.; Belahcen, A.; Lukichev, D.V.: A review of synchronous reluctance motor-drive advancements. Sustainability 13(2), 729 (2021). https://doi.org/10.3390/su13020729

    Article  Google Scholar 

  5. Agustin, C.A.; Wang, J.-T.; Lin, C.-K.: A modulated model predictive current controller for four-switch three-phase inverter-fed SynRMs. In: 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), pp. 1–5, (2019). https://doi.org/10.1109/IFEEC47410.2019.9014991

  6. Okazaki, Y.; Kawamura, W.; Hagiwara, M.; Akagi, H.; Ishida, T.; Tsukakoshi, M.; Nakamura, R.: Experimental comparisons between modular multilevel DSCC inverters and TSBC converters for medium-voltage motor drives. IEEE Trans. Power Electron. 32(3), 1805–1817 (2017). https://doi.org/10.1109/TPEL.2016.2562103

    Article  Google Scholar 

  7. Zhang, Y.; Adam, G.P.; Lim, T.C.; Finney, S.J.; Williams, B.W.: Hybrid multilevel converter: capacitor voltage balancing limits and its extension. IEEE Trans. Industr. Inf. 9(4), 2063–2073 (2013). https://doi.org/10.1109/TII.2012.2235846

    Article  Google Scholar 

  8. Madan, A.; Bostanci, E.: Comparison of two-level and three-level NPC inverter topologies for a PMSM drive for electric vehicle applications. In: 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 147–154, (2019). https://doi.org/10.1109/ACEMP-OPTIM44294.2019.9007197

  9. Madichetty, S.; Dasgupta, A.: Modular multilevel converters Part-I: a review on topologies, modulation, modeling and control schemes. Int. J. Power Electron. Drive Syst. (IJPEDS) 4(1), 36–50 (2014)

    Google Scholar 

  10. Kumar, P.S.; Satyanarayana, M.: Comparative analysis of modulation strategies applied to seven-level diode clamped multi-level inverter fed induction motor drive. In: 2015 Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG), pp. 231–237 (2015). https://doi.org/10.1109/PCCCTSG.2015.7503893

  11. Kumar, P.R.; Kaarthik, R.S.; Gopakumar, K.; Leon, J.I.; Franquelo, L.G.: Seventeen-level inverter formed by cascading flying capacitor and floating capacitor H-bridges. IEEE Trans. Power Electron. 30(7), 3471–3478 (2015). https://doi.org/10.1109/TPEL.2014.2342882

    Article  Google Scholar 

  12. Valan Rajkumar, M.; Manoharan, P.S.: FPGA based multilevel cascaded inverters with SVPWM algorithm for photovoltaic system. Sol. Energy 87, 229–245 (2013). https://doi.org/10.1016/j.solener.2012.11.003

    Article  Google Scholar 

  13. Poorfakhraei, A.; Narimani, M.; Emadi, A.: A review of multilevel inverter topologies in electric vehicles: current status and future trends. IEEE Open J. Power Electron. 2, 155–170 (2021). https://doi.org/10.1109/OJPEL.2021.3063550

    Article  Google Scholar 

  14. Krishnan, R.: Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design And Applications. CRC Press, Boca Raton (2017). https://doi.org/10.1201/9781420041644

    Book  Google Scholar 

  15. Farhan, A.; Abdelrahem, M.; Hackl, C.M.; Kennel, R.; Shaltout, A.; Saleh, A.: Advanced strategy of speed predictive control for nonlinear synchronous reluctance motors. Machines 8(3), 44 (2020). https://doi.org/10.3390/machines8030044

    Article  Google Scholar 

  16. Boztas, G.; Aydogmus, O.: Implementation of sensorless speed control of synchronous reluctance motor using extended Kalman filter. Eng. Sci. Technol. Int. J. 31, 101066 (2022). https://doi.org/10.1016/j.jestch.2021.09.012

    Article  Google Scholar 

  17. Ferdiansyah, I.; Raharja, L.P.S.; Yanaratri, D.S.; Purwanto, E.: Design of PID controllers for speed control of three phase induction motor based on direct-axis current (Id) coordinate using IFOC. In: 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pp. 369–372, (2019). https://doi.org/10.1109/ICITISEE48480.2019.9003893

  18. Kheirkhahan, P.: Robust anti-windup control design for PID controllers-theory and experimental verification. J. Modern Process. Manufact. Prod. 6(3), 5–34 (2017)

    Google Scholar 

  19. Zahraoui, Y.; Moutchou, M.; Tayane, S.; Elbadaoui, S.: Investigation of different speed controllers to improve the performance of vector-controlled synchronous reluctance motor. In: Smart Applications and Data Analysis. Communications in Computer and Information Science, pp. 129–143. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20490-6_11

  20. Tariq, M.; Bhattacharya, T.K.; Varshney, N.; Rajapan, D.: Fast response Antiwindup PI speed controller of Brushless DC motor drive: modeling, simulation and implementation on DSP. J. Electr. Syst. Inf. Technol. 3(1), 1–13 (2016). https://doi.org/10.1016/j.jesit.2015.11.008

    Article  Google Scholar 

  21. Fahassa, C.; Zahraoui, Y.; Akherraz, M.; Kharrich, M.; Elattar, E.E.; Kamel, S.: Induction motor DTC performance improvement by inserting fuzzy logic controllers and twelve-sector neural network switching table. Mathematics 10(9), 1357 (2022). https://doi.org/10.3390/math10091357

    Article  Google Scholar 

  22. Sheng, W.; Ge, Q.: A novel seven-level ANPC converter topology and its commutating strategies. IEEE Trans. Power Electron. 33(9), 7496–7509 (2018). https://doi.org/10.1109/TPEL.2017.2772885

    Article  Google Scholar 

  23. Zahraoui, Y.; Moutchou, M.; Tayane, S.; Fahassa, C.; Elbadaoui, S.; Ma’arif, A.: Synchronous reluctance motor performance improvement using MTPA control strategy and five-level inverter topology. J. Robot. Control (JRC) 3(5), 725–734 (2022). https://doi.org/10.18196/jrc.v3i5.15326

    Article  Google Scholar 

  24. Satyamsetti, V.; Tenali, R.; Kudupudi, N.: A novel sixteen switch three-phase nine-level voltage source inverter. Int. J. Eng. Technol. 9, 15–20 (2017). https://doi.org/10.21817/ijet/2017/v9i3/170903S003

    Article  Google Scholar 

  25. Kakosimos, P.; Pavlou, K.; Kladas, A.; Manias, S.: A single-phase nine-level inverter for renewable energy systems employing model predictive control. Energy Convers. Manage. 89, 427–437 (2015). https://doi.org/10.1016/j.enconman.2014.10.013

    Article  Google Scholar 

  26. Harin, M.M.; Vanitha, V.; Jayakumar, M.: Comparison of PWM Techniques for a three level Modular Multilevel Inverter. Energy Procedia 117, 666–673 (2017). https://doi.org/10.1016/j.egypro.2017.05.180

    Article  Google Scholar 

  27. Biju, K.; Ramchand, R.: A new space vector pulse width modulation technique for single-phase seven-level inverter with reduced number of switches. IETE J. Research 68(3), 1661–74 (2019). https://doi.org/10.1080/03772063.2019.1664339

    Article  Google Scholar 

  28. Peddapelli, S.K.: Recent advances in pulse width modulation techniques and multilevel inverters. Int. J. Electr Comput. Eng. 8(3), 600–608 (2014)

  29. Ghias, A.M.Y.M.; Pou, J.; Capella, G.J.; Acuna, P.; Agelidis, V.G.: On improving phase-shifted PWM for flying capacitor multilevel converters. IEEE Trans. Power Electron. 31(8), 5384–5388 (2016). https://doi.org/10.1109/TPEL.2016.2521803

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Zahraoui.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahraoui, Y., Moutchou, M. & Tayane, S. Synchronous Reluctance Motor Performance Improvement Using a Seven-Level and Nine-Level Inverter Topologies. Arab J Sci Eng 48, 15257–15270 (2023). https://doi.org/10.1007/s13369-023-08027-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08027-w

Keywords

Navigation