Skip to main content

Advertisement

Log in

A Hybrid Deep Learning Framework to Predict Alzheimer’s Disease Progression Using Generative Adversarial Networks and Deep Convolutional Neural Networks

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A major research subject in recent times is Alzheimer’s disease (AD) due to the growth and considerable societal impacts on health. So, the detection of AD is essential for medication care. Early detection of AD is critical for effective treatment, and monitoring the time period between normal aging’s unavoidable cognitive loss and dementia’s more catastrophic degradation is common practice. The deep learning method for early diagnosis and automated categorization of AD has suddenly gained a lot of attention since rapid advancement in the field of GANs approaches has now been used in the clinical research sector. Many recent studies using brain MRI images and convolutional neural networks (CNNs) to identify Alzheimer’s disease have yielded promising results. Instead of adequately engaging with the lack of real data, many research papers have focused on prediction. The main purpose of this paper is to do this by generating synthetic MRI images using a series of DCGANs. This paper demonstrates the effectiveness of this concept by cascading DCGANs that imitate different stages of Alzheimer’s disease and utilizing SRGANs to enhance the resolution of MRI scans. The purpose of this research is to come forward and tell if an individual might just get Alzheimer’s disease. CNN, DCGANs, and SRGANs are used in this paper to present a deep learning-based approach that improves classification and prediction accuracy to 99.7% and also handles the lack of data and the resolution of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bai, T.; Du, M.; Zhang, L.; Ren, L.; Ruan, L.; Yang, Y.; Qian, G.; Meng, Z.; Zhao, L.; Deen, M.J.: A novel Alzheimer’s disease detection approach using GAN-based brain slice image enhancement. Neurocomputing 492, 353–369 (2022). https://doi.org/10.1016/j.neucom.2022.04.012

    Article  Google Scholar 

  2. Zhao, Y.; Ma, B.; Che, T.; Li, Q.; Zeng, D.; Wang, X.; Li, S.: Multi-view prediction of Alzheimer’s disease progression with end-to-end integrated framework. J. Biomed. Inform. 125, 103978 (2021). https://doi.org/10.1016/j.jbi.2021.103978

    Article  PubMed  Google Scholar 

  3. Jo, T.; Nho, K.; Saykin, A.J.: Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front. Aging Neurosci. 11(2), 220–234 (2019). https://doi.org/10.3389/fnagi.2019.00220

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bowles, C.; Gunn, R.; Hammers, A.; Rueckert, D.: Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks. In: Proc. SPIE, vol. 10574, p. 105741 (2018). https://doi.org/10.1117/12.2293256

  5. Lin, W.; Tong, T.; Gao, Q.; Guo, D.; Du, X.; Yang, Y.; Guo, G.; Xiao, M.; Du, M.; Qu, X.: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front. Neurosci. 12(777), 1–13 (2018). https://doi.org/10.3389/fnins.2018.00777

    Article  CAS  Google Scholar 

  6. Lin, W.; Lin, W.; Chen, G.; Zhang, H.; Gao, Q.; Huang, Y.; Tong, T.; Du, M.: Bidirectional mapping of brain MRI and pet with 3D reversible GAN for the diagnosis of Alzheimer’s disease. Front. Neurosci. 15(6013), 1–13 (2021). https://doi.org/10.3389/fnins.2021.646013

    Article  Google Scholar 

  7. Zhao, Y.; Ma, B.; Jiang, P.; Zeng, D.; Wang, X.; Li, S.: Prediction of Alzheimer’s disease progression with multi-information generative adversarial network. IEEE J. Biomed. Health Inform. 25(3), 711–719 (2021). https://doi.org/10.1109/JBHI.2020.3006925

    Article  PubMed  Google Scholar 

  8. AbdulAzeem, Y.; Bahgat, W.M.; Badawy, M.: A CNN based framework for classification of Alzheimer’s disease. Neural Comput. Appl. 33(16), 10415–10428 (2021). https://doi.org/10.1007/s00521-021-05799-w

    Article  Google Scholar 

  9. Roychowdhury, S.; Roychowdhury, S.: A modular framework to predict Alzheimer’s disease progression using conditional generative adversarial networks 2, 1–8 (2020). https://doi.org/10.1109/IJCNN48605.2020.9206875

  10. Radford, A.; Metz, L.; Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks 1, 1–16 (2015). https://doi.org/10.48550/ARXIV.1511.06434

  11. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network 12, 105–114 (2017). https://doi.org/10.1109/CVPR.2017.19

  12. Liu, S.; Song, Y.; Cai, W.; Pujol, S.; Kikinis, R.; Wang, X.; Feng, D.: Multifold Bayesian kernelization in Alzheimer’s diagnosis. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013, pp. 303–310. Springer, Berlin, Heidelberg (2013)

  13. Martin, R.C.; Gerstenecker, A.T.; Triebel, K.; Falola, M.I.; McPherson, T.; Cutter, G.R.; Marson, D.C.: Declining financial capacity in mild cognitive impairment: a six-year longitudinal study. Archiv. Clin. Neuropsychol. 34, 152–161 (2019). https://doi.org/10.1093/arclin/acy030

    Article  Google Scholar 

  14. Mirza, M.; Osindero, S.: Conditional generative adversarial nets. CoRR 1411, p. 1784 (2014). https://doi.org/10.48550/arXiv.1411.1784

  15. Simonyan, K.; Zisserman, A.: Two-stream convolutional networks for action recognition in videos. CoRR 1406, p. 2199 (2014). https://doi.org/10.48550/arXiv.1406.2199

  16. Zhang, D.; Wang, Y.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55, 856–867 (2011). https://doi.org/10.1016/j.neuroimage.2011.01.008

    Article  PubMed  Google Scholar 

  17. Zhang, J.; Liu, M.; An, L.; Gao, Y.; Shen, D.: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J. Biomed. Health Inform. 21(6), 1607–1616 (2017). https://doi.org/10.1109/JBHI.2017.2704614

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sinharoy, R.; Sen, A.: Cardiovascular disease prediction using ensemble classification algorithm in machine learning 12, 2628–2633 (2022). https://doi.org/10.21917/ijsc.2022.0366

  19. Kazuhiro, K.: Generative adversarial networks for the creation of realistic artificial brain magnetic resonance images. Tomography 4, 159–163 (2018). https://doi.org/10.18383/j.tom.2018.00042

    Article  PubMed  PubMed Central  Google Scholar 

  20. King, R.D.; Brown, B.; Hwang, M.; Jeon, T.; George, A.T.: Fractal dimension analysis of the cortical ribbon in mild Alzheimer’s disease. Neuroimage 53, 471–479 (2010). https://doi.org/10.1016/j.neuroimage.2010.06.050

    Article  PubMed  Google Scholar 

  21. Kruger, A.: Implementation of a fast box-counting algorithm. Comput. Phys. Commun. 98(1), 224–234 (1996). https://doi.org/10.1016/0010-4655(96)00080-X

    Article  CAS  ADS  Google Scholar 

  22. Li, J.; Du, Q.; Sun, C.: An improved box-counting method for image fractal dimension estimation. Pattern Recognit. 42, 2460–2469 (2009). https://doi.org/10.1016/j.patcog.2009.03.001

    Article  ADS  Google Scholar 

  23. Liu, S.; Liu, S.; Cai, W.; Che, H.; Pujol, S.; Kikinis, R.; Feng, D.; Fulham, M.J.: ADNI: multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62(4), 1132–1140 (2015). https://doi.org/10.1109/TBME.2014.2372011

    Article  PubMed  Google Scholar 

  24. Yu, W.; Lei, B.; Wang, S.; Liu, Y.; Feng, Z.; Hu, Y.; Shen, Y.; Ng, M.K.: Morphological feature visualization of Alzheimer’s disease via multidirectional perception GAN. IEEE Trans. Neural Netw. Learn. Syst. 2, 1–15 (2022). https://doi.org/10.1109/TNNLS.2021.3118369

    Article  Google Scholar 

  25. Li, X.; Du, Z.; Huang, Y.; Tan, Z.: A deep translation (GAN) based change detection network for optical and SAR remote sensing images. ISPRS J. Photogramm. Remote Sens. 179, 14–34 (2021). https://doi.org/10.1016/j.isprsjprs.2021.07.007

    Article  ADS  Google Scholar 

  26. Qu, C.; Zou, Y.; Ma, Y.; Chen, Q.; Luo, J.; Fan, H.; Jia, Z.; Gong, Q.; Chen, T.: Diagnostic performance of generative adversarial network-based deep learning methods for Alzheimer’s disease: a systematic review and meta-analysis. Front. Aging Neurosci. 14, 841696 (2022). https://doi.org/10.3389/fnagi.2022.841696

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou, X.; Qiu, S.; Joshi, P.S.; Xue, C.; Killiany, R.J.; Mian, A.Z.; Chin, S.P.; Au, R.; Kolachalama, V.B.: Enhancing magnetic resonance imaging-driven Alzheimer’s disease classification performance using generative adversarial learning. Alzheimers Res. Ther. 13(1), 60 (2021). https://doi.org/10.1186/s13195-021-00797-5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sajjad, M.; Ramzan, F.; Khan, M.U.G.; Rehman, A.; Kolivand, M.; Fati, S.M.; Bahaj, S.A.: Deep convolutional generative adversarial network for Alzheimer’s disease classification using positron emission tomography (PET) and synthetic data augmentation. Microsc. Res. Tech. 84(12), 3023–3034 (2021). https://doi.org/10.1002/jemt.23861

    Article  PubMed  Google Scholar 

  29. Li, F.; Cheng, D.; Liu, M.: Alzheimer’s disease classification based on combination of multi-model convolutional networks. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST), vol. 1, pp. 1–5 (2017). https://doi.org/10.1109/IST.2017.8261566

  30. Hosseini-Asl, E.; Ghazal, M.; Mahmoud, A.; Aslantas, A.; Shalaby, A.M.; Casanova, M.F.; Barnes, G.N.; Gimel’farb, G.; Keynton, R.; El-Baz, A.: Alzheimer’s disease diagnostics by a 3d deeply supervised adaptable convolutional network. Front. Biosci. (Landmark Ed.) 23(3), 584–596 (2018). https://doi.org/10.2741/4606

    Article  PubMed  Google Scholar 

  31. Suk, H.-I.; Lee, S.-W.; Shen, D.; Initiative, T.A.D.N.: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220(2), 841–859 (2015). https://doi.org/10.1007/s00429-013-0687-3

    Article  PubMed  Google Scholar 

  32. Wang, H.; Shen, Y.; Wang, S.; Xiao, T.; Deng, L.; Wang, X.; Zhao, X.: Ensemble of 3d densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 333, 145–156 (2019). https://doi.org/10.1016/j.neucom.2018.12.018

    Article  Google Scholar 

  33. Feng, W.; Halm-Lutterodt, N.V.; Tang, H.; Mecum, A.; Mesregah, M.K.; Ma, Y.; Li, H.; Zhang, F.; Wu, Z.; Yao, E.; Guo, X.: Automated MRI-based deep learning model for detection of Alzheimer’s disease process. Int. J. Neural Syst. 30(06), 2050032 (2020). https://doi.org/10.1142/S012906572050032X. PMID: 32498641

    Article  PubMed  Google Scholar 

  34. Hussain, E.; Hasan, M.; Hassan, S.Z.; Hassan Azmi, T.; Rahman, M.A.; Zavid Parvez, M.: Deep learning based binary classification for Alzheimer’s disease detection using brain MRI images. In: 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), vol. 1, pp. 1115–1120 (2020). https://doi.org/10.1109/ICIEA48937.2020.9248213

  35. Magnin, B.; Mesrob, L.; Kinkingnéhun, S.; Pélégrini-Issac, M.; Colliot, O.; Sarazin, M.; Dubois, B.; Lehéricy, S.; Benali, H.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2), 73–83 (2009). https://doi.org/10.1007/s00234-008-0463-x

    Article  PubMed  Google Scholar 

  36. Ahmed, B.; Mizotin, O.; Benois-Pineau, M.: Alzheimer’s disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex. Comput. Med. Imaging Graph. 44, 13–25 (2015). https://doi.org/10.1016/j.compmedimag.2015.04.007

  37. Khvostikov, A.; Aderghal, K.; Krylov, A.; Catheline, G.; Benois-Pineau, J.: 3D inception-based CNN with SMRI and MD-DTI data fusion for Alzheimer’s disease diagnostics 3, 102–113 (2018). https://doi.org/10.13140/RG.2.2.30737.28006

  38. Korolev, S.; Safiullin, A.; Belyaev, M.; Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), vol. 1, pp. 835–838 (2017). https://doi.org/10.1109/ISBI.2017.7950647

  39. Pan, Y.; Liu, M.; Lian, C.; Zhou, T.; Xia, Y.; Shen, D.: Synthesizing missing pet from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. Med. Image Comput. Comput. Assist. Interv. 11072, 455–463 (2018). https://doi.org/10.1007/978-3-030-00931-1_52

    Article  PubMed  PubMed Central  Google Scholar 

  40. Logan, R.; Williams, B.G.; Ferreira da Silva, M.; Indani, A.; Schcolnicov, N.; Ganguly, A.; Miller, S.J.: Deep convolutional neural networks with ensemble learning and generative adversarial networks for Alzheimer’s disease image data classification. Front. Aging Neurosci. 13, 720226 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the editor as well as the reviewers for their insightful comments that helped to enhance the manuscript. The Alzheimer’s Disease Neuroimaging Initiative shared the data for this investigation.

Funding

This research was self-funded.

Author information

Authors and Affiliations

Authors

Contributions

RS led the implementations, data preprocessing, formal analysis, and experiments, wrote the original manuscript, and revised the manuscript. AS supervised and managed the research. RS contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Rajarshi SinhaRoy.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this research. The authors certify that they are free of any known financial conflicts of interest or close personal ties that might have looked to have affected the research presented in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SinhaRoy, R., Sen, A. A Hybrid Deep Learning Framework to Predict Alzheimer’s Disease Progression Using Generative Adversarial Networks and Deep Convolutional Neural Networks. Arab J Sci Eng 49, 3267–3284 (2024). https://doi.org/10.1007/s13369-023-07973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07973-9

Keywords

Navigation