Skip to main content

Advertisement

Log in

Assessing the Potential of Biosurfactant Production by Bacillus subtilis MTCC 2423 to Remediate the Zinc-Contaminated Soil: A Process Optimization Approach

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Heavy metal contamination in soil due to rapid industrialization has imparted a severe threat to the terrestrial ecosystem. Mining activity has perturbed the fertility and increased the heavy metal concentration in soil. Here we explore an inexpensive and environmentally friendly tool, biosurfactant to restore edaphic factors. Here, we have synthetically prepared contaminated sandy soil and black cotton soil with zinc and investigated the potential of biosurfactants in decontaminating zinc (Zn) from soil samples (sandy soil and black cotton soil). The biosurfactant (64 dynes/cm) was produced by bacillus subtilis MTCC 2423 on an unconventional substrate (20% distillery spent wash) and used as a tool to decontaminate zinc (heavy metal) from soil. The column experimental study was performed to evaluate the heavy metal removal efficiency of the biosurfactant. Statistical tool, Box-Behnken design (BBD) with an artificial neural network linked genetic algorithm (ANN-GA) was adopted to optimize the three independent variables viz., pH, biosurfactant concentration (%), and heavy metal (Zn) concentration. Results reveal that the decontamination efficiency of biosurfactant varied from soil to soil. Highest efficiency was observed in sandy soil compared to black cotton soil. Maximum efficiency of 89.11% was achieved with an optimal level of pH = 5, biosurfactant concentration = 100%, and Zn concentration = 2750 ppm in sandy soil. Whereas a maximum of 36.03% of zinc was removed in black cotton soil with pH, biosurfactant, and zinc concentrations of 7, 55%, and 500 ppm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ayangbenro, A.S.; Babalola, O.O.: Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Sci. Rep. 10, 1–12 (2020). https://doi.org/10.1038/s41598-020-75170-x

    Article  Google Scholar 

  2. Chellaiah, E.R.: Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl. Water Sci. 8, 1–10 (2018). https://doi.org/10.1007/s13201-018-0796-5

    Article  Google Scholar 

  3. Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M.: Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168, 944–968 (2017). https://doi.org/10.1016/j.chemosphere.2016.10.115

    Article  Google Scholar 

  4. Bharwana, S.; El Hadi, H.; Bilal Shakoor, M.; Ali, S.; Farid, M.; Ahsan Farooq, M.; Muhammad Tauqeer, H.; Iftikhar, U.; Hannan, F.; Aslam, B.S.: Heavy metal pollution, a global problem and its remediation by chemically enhanced phytoremediation: a review. J. Biodivers. Environ. Sci. 3, 12–20 (2013)

    Google Scholar 

  5. Hussain, S.; Khan, M.; Majid, T.; Sheikh, M.; Mumtaz, M.Z.; Chohan, T.A.; Shamim, S.; Liu, Y.: Zinc essentiality, toxicity, and its bacterial bioremediation: a comprehensive insight. Front. Microbiol. (2022). https://doi.org/10.3389/fmicb.2022.900740

    Article  Google Scholar 

  6. Wuana, R.A.; Okieimen, F.E.: Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for emediation. Int. Schol. Res. Not. 2011, 402647 (2011). https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  7. Pagnanelli, F.; Esposito, A.; Toro, L.: Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res. 37, 627–633 (2003)

    Article  Google Scholar 

  8. Plum, L.M.; Rink, L.; Hajo, H.: The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health. 7, 1342–1365 (2010). https://doi.org/10.3390/ijerph7041342

    Article  Google Scholar 

  9. Femina Carolin, C.; Senthil Kumar, P.; Chitra, B.; Fetcia Jackulin, C.; Ramamurthy, R.: Stimulation of Bacillus sp. by lipopeptide biosurfactant for the degradation of aromatic amine 4-Chloroaniline. J. Hazard. Mater. 415, 125716 (2021). https://doi.org/10.1016/j.jhazmat.2021.125716

    Article  Google Scholar 

  10. Tandogan, B.; UlusuHacettepe, N.N.: Effects of cadmium and zinc ions on purified lamb kidney cortex glucose-6-phosphate dehydrogenase activity. J. Enzyme Inhib. Med. Chem 21(2), 225–230 (2006). https://doi.org/10.1080/14756360500480533

    Article  Google Scholar 

  11. Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N.: Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 174, 714–727 (2019). https://doi.org/10.1016/j.ecoenv.2019.02.068

    Article  Google Scholar 

  12. Karthik, C.; Oves, M.; Thangabalu, R.; Sharma, R.; Santhosh, S.B.; Indra Arulselvi, P.: Cellulosimicrobium funkei-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under Chromium(VI) toxicity. J. Adv. Res. 7, 839–850 (2016). https://doi.org/10.1016/j.jare.2016.08.007

    Article  Google Scholar 

  13. Wyszkowska, J.; Borowik, A.; Kucharski, M.; Kucharski, J.: Oddzia£ywanie kadmu, miedzi i cynku na roœliny, drobnoustroje i enzymy glebowe. J. Elem. 18, 769–796 (2013). https://doi.org/10.5601/jelem.2013.18.4.455

    Article  Google Scholar 

  14. Etesami, H.: Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol. Environ. Saf. 147, 175–191 (2018). https://doi.org/10.1016/j.ecoenv.2017.08.032

    Article  Google Scholar 

  15. He, Z.; Shentu, J.; Yang, X.; Baligar, V.C.; Zhang, T.; Stoffella, P.J.: Heavy metal contamination of soils: sources, indicators, and assessment. J. Environ. Indic. 9, 17–18 (2015)

    Google Scholar 

  16. Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F.: Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 76, 17–38 (2019). https://doi.org/10.1016/j.jiec.2019.03.029

    Article  Google Scholar 

  17. Wu, J.; Xiao, C.; Wu, H.: Exploring electrode capture potential in different Cr-contaminated soils with enhanced electrolytes based on chemical fractionation. Sep. Purif. Technol. 197, 54–62 (2018). https://doi.org/10.1016/j.seppur.2017.12.047

    Article  Google Scholar 

  18. Bailón-Salas, A.M.; Ordaz-Díaz, L.A.; Cháirez-Hernández, I.; Alvarado-de, P.A.; Proal-Nájera, J.B.: Lead and copper removal from groundwater by spherical agglomeration using a biosurfactant extracted from Yucca decipiens Trel. Chemosphere 207, 278–284 (2018). https://doi.org/10.1016/j.chemosphere.2018.05.103

    Article  Google Scholar 

  19. Shoaib, A.; Akhtar, S.; Akhtar, N.: Copper tolerance, protein and catalytic activity in phytopathogenic fungus alternaria alternata. Glob. Nest J. 17, 664–672 (2015). https://doi.org/10.30955/gnj.001513

    Article  Google Scholar 

  20. Kumar, V.; Dwivedi, S.K.: Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere 237, 124567 (2019). https://doi.org/10.1016/j.chemosphere.2019.124567

    Article  Google Scholar 

  21. Anno, F.D.; Sansone, C.; Ianora, A.; Anno, A.D.: AC SC. Elsevier Ltd (2018)

  22. Abou-Aly, H.E.; Youssef, A.M.; El-Meihy, R.M.; Tawfik, T.A.; El-Akshar, E.A.: Evaluation of heavy metals tolerant bacterial strains as antioxidant agents and plant growth promoters. Biocatal. Agric. Biotechnol. 19, 101110 (2019). https://doi.org/10.1016/j.bcab.2019.101110

    Article  Google Scholar 

  23. Phulpoto, I.A.; Yu, Z.; Hu, B.; Wang, Y.; Ndayisenga, F.; Li, J.; Liang, H.; Qazi, M.A.: Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microb. Cell Fact. 19, 1–12 (2020). https://doi.org/10.1186/s12934-020-01402-4

    Article  Google Scholar 

  24. Juwarkar, A.A.; Dubey, K.V.; Nair, A.; Singh, S.K.: Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian J. Microbiol. 48, 142–146 (2008). https://doi.org/10.1007/s12088-008-0014-5

    Article  Google Scholar 

  25. Usman, M.M.: Application of biosurfactants in environmental biotechnology. Remediat. Oil Heavy Metal 3, 289–304 (2016). https://doi.org/10.3934/bioeng.2016.3.289

    Article  Google Scholar 

  26. Karanth, N.G.K.; Deo, P.G.; Veenanadig, N.K.: Microbial production of biosurfactants and their importance. Curr. Sci. 77, 116–126 (1999)

    Google Scholar 

  27. Veenanadig, N.K.; Gowthaman, M.K.; Karanth, N.G.K.: Scale up studies for the production of biosurfactant in packed column bioreactor. Bioprocess Eng. Bioprocess Biosyst. Eng. 22, 95–99 (2000). https://doi.org/10.1007/s004490050017

    Article  Google Scholar 

  28. Mnif, I.; Ghribi, D.: Microbial derived surface active compounds: properties and screening concept. World J. Microbiol. Biotechnol. 31, 1001–1020 (2015). https://doi.org/10.1007/s11274-015-1866-6

    Article  Google Scholar 

  29. Lopes, C.S.C.; Teixeira, D.B.; Braz, B.F.; Santelli, R.E.; de Castilho, L.V.A.; Gomez, J.G.C.; Castro, P.V.R.; Seldin, L.; Freire, D.M.G.: Application of rhamnolipid surfactant for remediation of toxic metals of long- and short-term contamination sites. Int. J. Environ. Sci. Technol. 18, 575–588 (2021). https://doi.org/10.1007/s13762-020-02889-5

    Article  Google Scholar 

  30. Devatha, N.A.J.C.P.: Degradation of triclosan from domestic wastewater by biosurfactant produced from Bacillus Licheniformis. Mol. Biotechnol. (2019). https://doi.org/10.1007/s12033-019-00193-3

    Article  Google Scholar 

  31. Adi, V.K.; Jayalatha, N.A.: Restoration of physico-chemical properties of zinc contaminated soil by bacterial biosurfactant. Int. J. Curr. Trends Sci. Technol. (2017). https://doi.org/10.15520/ctst.v7i10.59

    Article  Google Scholar 

  32. Diaz, M.A.; De Ranson, I.U.; Dorta, B.; Banat, I.M.; Blazquez, M.L.; Gonzalez, F.; Muñoz, J.A.; Ballester, A.: Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contam. 24, 16–29 (2015). https://doi.org/10.1080/15320383.2014.907239

    Article  Google Scholar 

  33. Suganthi, S.H.; Murshid, S.; Sriram, S.; Ramani, K.: Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants. J. Environ. Manag. 220, 87–95 (2018). https://doi.org/10.1016/j.jenvman.2018.04.120

    Article  Google Scholar 

  34. Adi, V.K.; Savitri, B.K.: Utilization of spent wash for optimum production of biosurfactant using response surface methodology. J. Mater. Environ. Sci. 10(4), 298–304 (2019)

    Google Scholar 

  35. Hentati, D.; Chebbi, A.; Hadrich, F.; Frikha, I.; Rabanal, F.; Sayadi, S.; Manresa, A.; Chamkha, M.: Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicol. Environ. Saf. 167, 441–449 (2019). https://doi.org/10.1016/j.ecoenv.2018.10.036

    Article  Google Scholar 

  36. Gudiña, E.J.; Fernandes, E.C.; Rodrigues, A.I.; Teixeira, J.A.; Rodrigues, L.R.: Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front. Microbiol. 6, 1–7 (2015). https://doi.org/10.3389/fmicb.2015.00059

    Article  Google Scholar 

  37. Adamu, A.; Ijah, U.J.J.; Riskuwa, M.L.; Ismail, H.Y.; Ibrahim, U.B.: Isolation of biosurfactant producing bacteria from tannery effluents in Sokoto metropolis, Nigeria. Int. J. Innov. Sci. Eng. Technol. 2, 366–373 (2015)

    Google Scholar 

  38. Gong, G.; Zheng, Z.; Chen, H.; Yuan, C.; Wang, P.; Yao, L.; Yu, Z.: Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technol. Biotechnol. 47, 27–31 (2009)

    Google Scholar 

  39. Naik, N.M.; Jagadeesh, K.S.; Alagawadi, A.R.: Microbial decolorization of spentwash: a review. Indian J. Microbiol. 48, 41–48 (2008). https://doi.org/10.1007/s12088-008-0005-6

    Article  Google Scholar 

  40. Dutta, K.; Dasu, V.V.; Hegde, K.: Development of medium and kinetic modeling for enhanced production of Cutinase from pseudomonas cepacia NRRL B-2320. Adv. Microbiol. 03, 479–489 (2013). https://doi.org/10.4236/aim.2013.36064

    Article  Google Scholar 

  41. Kumar, S.; Pakshirajan, K.; Venkata Dasu, V.: Development of medium for enhanced production of glutaminase-free l-asparaginase from pectobacterium carotovorum MTCC 1428. Appl. Microbiol. Biotechnol. 84, 477–486 (2009). https://doi.org/10.1007/s00253-009-1973-0

    Article  Google Scholar 

  42. Venkata Dasu, V.; Panda, T.: Optimization of microbiological parameters for enhanced griseofulvin production using response surface methodology. Bioprocess Eng. 22, 45–49 (2000). https://doi.org/10.1007/pl00009099

    Article  Google Scholar 

  43. Prabhu, A.A.; Chityala, S.; Garg, Y.; Venkata Dasu, V.: Reverse micellar extraction of papain with cationic detergent based system: an optimization approach. Prep. Biochem. Biotechnol. 47, 236–244 (2017). https://doi.org/10.1080/10826068.2016.1201685

    Article  Google Scholar 

  44. Yasin, Y.; Ahmad, F.B.H.; Ghaffari-Moghaddam, M.; Khajeh, M.: Application of a hybrid artificial neural network-genetic algorithm approach to optimize the lead ions removal from aqueous solutions using intercalated tartrate–Mg–Al layered double hydroxides. Environ. Nanotechnol. Monit. Manag. 1–2, 2–7 (2014). https://doi.org/10.1016/j.enmm.2014.03.001

    Article  Google Scholar 

  45. Singh, P.; Patil, Y.; Rale, V.: Biosurfactant production: emerging trends and promising strategies. J. Appl. Microbiol. 126, 2–13 (2019). https://doi.org/10.1111/jam.14057

    Article  Google Scholar 

  46. Gao, L.; Kano, N.; Sato, Y.; Li, C.; Zhang, S.; Imaizumi, H.: Behavior and distribution of heavy metals including rare earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application. Bioinorg. Chem. Appl. (2012). https://doi.org/10.1155/2012/173819

    Article  Google Scholar 

  47. Desai, K.M.; Survase, S.A.; Saudagar, P.S.; Lele, S.S.; Singhal, R.S.: Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem. Eng. J. 41, 266–273 (2008). https://doi.org/10.1016/j.bej.2008.05.009

    Article  Google Scholar 

  48. Khayet, M.; Cojocaru, C.: Artificial neural network modeling and optimization of desalination by air gap membrane distillation. Sep. Purif. Technol. 86, 171–182 (2012). https://doi.org/10.1016/j.seppur.2011.11.001

    Article  Google Scholar 

  49. Ashish, A.; Prabhu, A.J.: Optimization of enzyme assisted improvement of polyphenols and free radical scavenging activity in red rice bran: a statistical and neural network based approach. Prep. Biochem. Biotechnol. 47(4), 397–405 (2017)

    Article  Google Scholar 

  50. Jayalatha, N.A.; Devatha, C.P.: Experimental investigation for treating ibuprofen and triclosan by biosurfactant from domestic wastewater. J. Environ. Manag. 328, 116913 (2023). https://doi.org/10.1016/j.jenvman.2022.116913

    Article  Google Scholar 

  51. Luna, J.M.; Rufino, R.D.; Sarubbo, L.A.: Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf. Environ. Prot. 102, 558–566 (2016). https://doi.org/10.1016/j.psep.2016.05.010

    Article  Google Scholar 

  52. De Franҫa, Í.W.L.; Lima, A.P.; Lemos, J.A.M.; Lemos, C.G.F.; Melo, V.M.M.; De Sant’ana, H.B.; Gonҫalves, L.R.B.: Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catal. Today. 255, 10–15 (2015). https://doi.org/10.1016/j.cattod.2015.01.046

    Article  Google Scholar 

  53. Yang, Z.; Shi, W.; Yang, W.; Liang, L.; Yao, W.; Chai, L.; Gao, S.; Liao, Q.: Combination of bioleaching by gross bacterial biosurfactants and flocculation: a potential remediation for the heavy metal contaminated soils. Chemosphere 206, 83–91 (2018). https://doi.org/10.1016/j.chemosphere.2018.04.166

    Article  Google Scholar 

  54. Grzywaczyk, A.; Smułek, W.; Smułek, G.; Ślachciński, M.; Kaczorek, E.: Application of natural surfactants for improving the leaching of zinc and copper from different soils. Environ. Technol. Innov. 24, 101926 (2021). https://doi.org/10.1016/j.eti.2021.101926

    Article  Google Scholar 

  55. Kanmani, S.; Gandhimathi, R.: Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl. Water Sci. 3, 193–205 (2013). https://doi.org/10.1007/s13201-012-0072-z

    Article  Google Scholar 

  56. Sujata, B.R.; Khanapure, V.U.: Removal of heavy metals from the contaminated soil using soil washing technique with biosurfactant. Int. J. Eng. Res. 6, 366–372 (2017). https://doi.org/10.17577/ijertv6is070234

    Article  Google Scholar 

  57. Esakku, S.; Palanivelu, K.; Joseph, K.: Assessment of heavy metals in a municipal solid waste dumpsite. Work. Sustain. Landfill Manag. 35, 139–145 (2003)

    Google Scholar 

  58. Tang, J.; He, J.; Xin, X.; Hu, H.; Liu, T.: Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chem. Eng. J. (2017). https://doi.org/10.1016/j.cej.2017.12.010

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the H.O.D Department of Civil Engineering, B.I.E.T. Davangere, for providing the laboratory facility to conduct the work. Also, the authors are thankful to Shri Laxmi Narayan Chemicals and Fertilizers Private Limited, Dharwad, for giving the AAS instrument facility for the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Kumara Adi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 447 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayalatha, N.A., Prabhu, A. & Adi, V.K. Assessing the Potential of Biosurfactant Production by Bacillus subtilis MTCC 2423 to Remediate the Zinc-Contaminated Soil: A Process Optimization Approach. Arab J Sci Eng 49, 43–57 (2024). https://doi.org/10.1007/s13369-023-07938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07938-y

Keywords

Navigation