Skip to main content
Log in

Detecting Cutout Shape and Predicting Its Location in Sandwich Structures Using Free Vibration Analysis and Tuned Machine-Learning Algorithms

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the detection of cutout shapes and the prediction of their location using machine learning algorithms. To this end, a series of simulation studies were performed for constructing a dataset containing different cutout shapes in different locations. Firstly, free vibration analysis of sandwich structures was performed using COMSOL. Natural frequencies of sandwich structures with different-shaped cutouts at different locations are obtained as a result of conducted simulation studies. Since the location and shape of cutouts significantly cause a change in the natural frequencies of sandwich structures, the first six natural frequencies of the sandwich structure chosen to be used as input for the machine learning algorithms. Afterward, different machine learning algorithms were employed to classify and predict the cutout shapes and locations using MATLAB. Furthermore, the Bayesian optimization algorithm has been adopted in order to tune the hyperparameters of the machine learning classification algorithms and improve their performance. The results of this work showed that the best cutout shape detection can be conducted by the tuned SVM machine learning algorithm with classification accuracy reaching 98.4%. Moreover, multiple machine learning algorithms have been adopted for predicting the location of the cutouts. The location prediction study gave an outperformed performance where the R-Squared metric was 1 for all tested machine learning algorithms. Also, the results of the location prediction study showed that the best RMSE value was 0.00049 that has been obtained using the Gaussian process. In summary, this study can be used as a reference by the designers to develop an opinion about the created SS before design and production, which can help in saving time and money.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khechai, A.; Belarbi, M.O.; Bouaziz, A.; Rekbi, F.M.L.: A general analytical solution of stresses around circular holes in functionally graded plates under various in-plane loading conditions. Acta Mech. 234(2), 671–691 (2022). https://doi.org/10.1007/s00707-022-03413-1

    Article  MathSciNet  Google Scholar 

  2. Garg, A.; Belarbi, M.; Chalak, H.D.; Chakrabarti, A.: A review of the analysis of sandwich FGM structures. Compos. Struct. 258, 113427 (2021). https://doi.org/10.1016/j.compstruct.2020.113427

    Article  Google Scholar 

  3. Garg, A.; Mukhopadhyay, T.; Belarbi, M.O.; Chalak, H.D.; Singh, A.; Zenkour, A.M.: “On accurately capturing the through-thickness variation of transverse shear and normal stresses for composite beams using FSDT coupled with GPR. Compos. Struct. 305, 116551 (2023). https://doi.org/10.1016/j.compstruct.2022.116551

    Article  Google Scholar 

  4. Garg, A.: Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core. Acta Mech. Solida Sinica. 35(4), 587–602 (2022). https://doi.org/10.1007/s10338-021-00295-z

    Article  Google Scholar 

  5. Arshad, S.H.; Naeem, M.N.; Soutis, C.: Influence of ring support on free vibration of sandwich functionally graded cylindrical shells with middle layer of isotropic material. J. Eng. Res. 4(1), 159–186 (2013)

    Google Scholar 

  6. Demircioğlu, U.; Yıldız, A.S.; Çakır, M.T.: An investigation of the effect of asymmetry on the free vibration behavior of sandwich structure. Sak. Univ. J. Sci. 26(67934), 54–61 (2021). https://doi.org/10.16984/saufenbilder.955314

    Article  Google Scholar 

  7. Mishra, N.; Basa, B.; Sarangi, S. K.: Free vibration Analysis of Sandwich Plates with cutout. IOP Conf. Ser. Mater. Sci. Eng., vol. 149, no. 1, 2016. doi: https://doi.org/10.1088/1757-899X/149/1/012149.

  8. Bhardwaj, H.K.; Vimal, J.; Sharma, A.K.: Study of free vibration analysis of laminated composite plates with triangular cutouts. Eng. Solid Mech. 1(1), 43–50 (2015). https://doi.org/10.5267/j.esm.2014.11.002

    Article  Google Scholar 

  9. Ramakrishna, S.; Rao, K.M.; Rao, N.S.: Free vibration analysis of laminates with circular cutout by hybrid-stress finite element. Compos. Struct. 21(3), 177–185 (1992). https://doi.org/10.1016/0263-8223(92)90017-7

    Article  ADS  Google Scholar 

  10. Chikkol Venkateshappa, S.; Kumar, P.; Ekbote, T.: Free vibration studies on plates with central cut-out. CEAS Aeronaut. J. 10(2), 623–632 (2019). https://doi.org/10.1007/s13272-018-0339-7

    Article  Google Scholar 

  11. Bhardwaj, H.K.; Vimal, J.; Sharma, A.K.: Study of free vibration analysis of laminated composite plates with Skew Cut-outs based on FSD. J. Civ. Eng. Environ. Technol. 1(1), 71–75 (2014). https://doi.org/10.5267/j.esm.2014.11.002

    Article  Google Scholar 

  12. Vimal, J.; Srivastava, R.K.; Bhatt, A.D.; Sharma, A.K.: Free vibration analysis of functionally graded skew plates with circular cutouts. Int. J. Eng. Sci. Technol. 6(3), 121 (2014)

    Google Scholar 

  13. Vimal, J.; Srivastava, R.K.; Bhatt, A.D.; Sharma, A.K.: Free vibration analysis of moderately thick functionally graded plates with multiple circular and square cutouts using finite element method. J. Solid Mech. 7(1), 83–95 (2015)

    Google Scholar 

  14. Mondal, S.; Patra, A.K.; Chakraborty, S.; Mitra, N.: Dynamic performance of Sandwich composite plates with circular hole/cut-out: a mixed experimental-numerical study. Compos. Struct. 131, 479–489 (2015). https://doi.org/10.1016/j.compstruct.2015.05.046

    Article  Google Scholar 

  15. Demir, O.; Balkan, D.; Peker, R.C.; Metin, M.; Arikoglu, A.: Vibration analysis of curved composite sandwich beams with viscoelastic core by using differential quadrature method. J. Sandw. Struct. Mater. 22(3), 743–770 (2020). https://doi.org/10.1177/1099636218767491

    Article  Google Scholar 

  16. Wang, W.; Shenoi, R.A.: Local free vibration analysis of initially stressed curved sandwich beams. Sandw. Struct. Adv. Sandw. Struct. Mater. (2005). https://doi.org/10.1007/1-4020-3848-8_55

    Article  Google Scholar 

  17. Ahmed, K.M.: Free vibration of curved sandwich beams by the method of finite elements. J. Sound Vib. 18, 61–74 (1971)

    Article  ADS  Google Scholar 

  18. Sakiyama, T.; Matsuda, H.; Morita, C.: Free vibration analysis of sandwich arches with elastic or viscoelastic core and various kinds of axis-shape and boundary conditions. J. Sound Vib. 203(3), 505–522 (1997). https://doi.org/10.1006/jsvi.1996.0900

    Article  ADS  Google Scholar 

  19. Li, N.; Ben Tahar, M.; Meng, L.; Sui, F.: Reduction of vibration by periodically stitched sandwich panel. Chin. J. Aeronaut. 34(7), 39–49 (2021). https://doi.org/10.1016/j.cja.2020.11.010

    Article  Google Scholar 

  20. Wang, M.; Li, Z.M.; Qiao, P.: Vibration analysis of sandwich plates with carbon nanotube-reinforced composite face-sheets. Compos. Struct. 200(May), 799–809 (2018). https://doi.org/10.1016/j.compstruct.2018.05.058

    Article  Google Scholar 

  21. Purushothaman, V.; Guruprasad, V.: Vibration Analysis of Sandwich Beam with Different Core Patterns. Int. J. Eng. Res. Technol. 6(06), 2–5 (2018)

    Google Scholar 

  22. Seçgin, A.; Kara, M.: Stochastic vibration analyses of laminated composite plates via a statistical moments-based methodology. J. Vib. Eng. Technol. 7(1), 73–82 (2019). https://doi.org/10.1007/s42417-018-0077-5

    Article  Google Scholar 

  23. Chandel, V.S.; Talha, M.: On uncertainty modeling of thermoelastic vibration for porous nanosandwich beams with gradient core based on nonlocal higher order beam model. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2133192

    Article  Google Scholar 

  24. Ying, Z.G.; Ruan, Z.G.; Ni, Y.Q.: Response adjustability analysis of partial and ordinary differential coupling system for visco-elastomer sandwich plate coupled with distributed masses under random excitation via spatial periodicity strategy. Symmetry (Basel) (2022). https://doi.org/10.3390/sym14091794

    Article  Google Scholar 

  25. Ying, Z.G.; Ni, Y.Q.; Duan, Y.F.: Stochastic vibration response of a sandwich beam with nonlinear adjustable visco-elastomer core and supported mass. Struct. Eng. Mech. 64(2), 259–270 (2017). https://doi.org/10.12989/sem.2017.64.2.259

    Article  Google Scholar 

  26. Druesne, F.; Hamdaoui, M.; Lardeur, P.; Daya, E.M.: Variability of dynamic responses of frequency dependent visco-elastic sandwich beams with material and physical properties modeled by spatial random fields. Compos. Struct. 152, 316–323 (2016). https://doi.org/10.1016/j.compstruct.2016.05.026

    Article  Google Scholar 

  27. Sahoo, R.; Grover, N.; Singh, B.N.: Random vibration response of composite–sandwich laminates. Arch. Appl. Mech. 91(9), 3755–3771 (2021). https://doi.org/10.1007/s00419-021-01976-4

    Article  ADS  Google Scholar 

  28. Nayak, A.K.; Satapathy, A.K.: Stochastic damped free vibration analysis of composite sandwich plates. Procedia Eng. 144, 1315–1324 (2016). https://doi.org/10.1016/j.proeng.2016.05.130

    Article  Google Scholar 

  29. Garg, A.; Chalak, H.D.; Belarbi, M.O.; Zenkour, A.M.: A parametric analysis of free vibration and bending behavior of sandwich beam containing an open-cell metal foam core. Arch. Civ. Mech. Eng. 22(1), 1–15 (2022). https://doi.org/10.1007/s43452-021-00368-3

    Article  Google Scholar 

  30. Garg, A.; Mukhopadhyay, T.; Belarbi, M.O.; Li, L.: “Random forest-based surrogates for transforming the behavioral predictions of laminated composite plates and shells from FSDT to Elasticity solutions. Compos. Struct. (2023). https://doi.org/10.1016/j.compstruct.2023.116756

    Article  Google Scholar 

  31. Manujesh, B.J.; Prajna, M.R.: Damage detection and classification for sandwich composites using machine learning. Mater. Today Proc. 52, 702–709 (2022). https://doi.org/10.1016/j.matpr.2021.10.088

    Article  Google Scholar 

  32. Liu, Z.; Ardabilian, M.; Zine, A.; Ichchou, M.: Crack damage identification of a thick composite sandwich structure based on Gaussian Processes classification. Compos. Struct. 255, 112825 (2021). https://doi.org/10.1016/j.compstruct.2020.112825

    Article  Google Scholar 

  33. Liu, R.; Li, S.; Zhang, G.; Jin, W.: Depth detection of void defect in sandwich-structured immersed tunnel using elastic wave and decision tree. Constr. Build. Mater. 305, 124756 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124756

    Article  ADS  Google Scholar 

  34. Caliri, M.F.; Ferreira, A.J.M.; Tita, V.: A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method. Compos. Struct. 156, 63–77 (2016). https://doi.org/10.1016/j.compstruct.2016.02.036

    Article  Google Scholar 

  35. Prakash, E.V.; Kumar, M.; Sinha, K.; Shilpi, A.: To study analysis of sandwich beam with ansys and fem. Int. J. Inf. Res. Rev. 2, 947–951 (2015)

    Google Scholar 

  36. Laszlo P. Kollar and G. S.: Springer, Mechanics of Composite Structures, 1st ed. Cambridge University Press, Cambridge (2003)

  37. Qing, X.; Liao, Y.; Wang, Y.; Chen, B.; Zhang, F.; Wang, Y.: Machine learning based quantitative damage monitoring of composite structure. Int. J. Smart Nano Mater. 13(2), 167–202 (2022). https://doi.org/10.1080/19475411.2022.2054878

    Article  ADS  Google Scholar 

  38. Shah, K.; Patel, H.; Sanghvi, D.; Shah, M.: A comparative analysis of logistic regression, random forest and KNN models for the text classification. Augment. Hum. Res. 5(1), 1–16 (2020). https://doi.org/10.1007/s41133-020-00032-0

    Article  CAS  Google Scholar 

  39. Amethiya, Y.; Pipariya, P.; Patel, S.; Shah, M.: Comparative analysis of breast cancer detection using machine learning and biosensors. Intell. Med. 2(2), 69–81 (2022). https://doi.org/10.1016/j.imed.2021.08.004

    Article  Google Scholar 

  40. Nelon, C.; Myers, O.; Hall, A.: The intersection of damage evaluation of fiber-reinforced composite materials with machine learning—a review. J. Compos. Mater. 56(9), 1417–1452 (2022). https://doi.org/10.1177/00219983211037048

    Article  ADS  Google Scholar 

  41. Garg, A., et al.: Machine learning models for predicting the compressive strength of concrete containing nano silica. Comput. Concr. 1, 33–42 (2022)

    Google Scholar 

  42. Stergiou, K.; Ntakolia, C.; Varytis, P.; Koumoulos, E.; Karlsson, P.; Moustakidis, S.: Enhancing property prediction and process optimization in building materials through machine learning: a review. Comput. Mater. Sci. 220, 112031 (2023). https://doi.org/10.1016/j.commatsci.2023.112031

    Article  CAS  Google Scholar 

  43. Kundu, P.; Darpe, A.K.; Kulkarni, M.S.: An ensemble decision tree methodology for remaining useful life prediction of spur gears under natural pitting progression. Struct. Heal. Monit. 19(3), 854–872 (2020). https://doi.org/10.1177/1475921719865718

    Article  Google Scholar 

  44. Sesmero, M.P.; Ledezma, A.I.; Sanchis, A.: “Generating ensembles of heterogeneous classifiers using Stacked Generalization. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 5(1), 21–34 (2015). https://doi.org/10.1002/widm.1143

    Article  Google Scholar 

  45. Sen, P.C.; Hajra, M.; Ghosh, M.: Supervised classification algorithms in machine learning: a survey and review. Technol. Model. Graph Emerg (2019). https://doi.org/10.1007/978-981-13-7403-6_11

    Article  Google Scholar 

  46. Wickramasinghe, I.; Kalutarage, H.: Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Comput. 25(3), 2277–2293 (2021). https://doi.org/10.1007/s00500-020-05297-6

    Article  Google Scholar 

  47. Ray, S.: A quick review of machine learning algorithms. in: Proc. Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput. Trends, Prespectives Prospect. Com. 2019, pp. 35–39, 2019, doi: https://doi.org/10.1109/COMITCon.2019.8862451.

  48. Kanagawa, M.; Hennig, P.; Sejdinovic, D.; Sriperumbudur, B. K.: Gaussian Processes and Kernel methods: a review on connections and equivalences. 2018. arXiv preprint arXiv:1807.02582

  49. Pushparaj, P.; Suresha, B.: Free vibration analysis of laminated composite plates using finite element method. Polym. Polym. Compos. 24(7), 529–538 (2016). https://doi.org/10.1177/096739111602400712

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halit Bakır.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Khaled Bakour or Halit Bakır: Due to the author’s dual citizenship, his name can be written in two different ways.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demircioğlu, U., Sayil, A. & Bakır, H. Detecting Cutout Shape and Predicting Its Location in Sandwich Structures Using Free Vibration Analysis and Tuned Machine-Learning Algorithms. Arab J Sci Eng 49, 1611–1624 (2024). https://doi.org/10.1007/s13369-023-07917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07917-3

Keywords

Navigation