Skip to main content
Log in

Blockchain Based n-party Virtual Payment Model with Concurrent Execution

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Blockchain technology has limitations in terms of scalability and throughput of transactions compared to other payment methods such as VISA and smart cards. But, Off-chain payment solves this issue by performing micro-transactions without communicating with the ledger. Similarly, Ethereum uses smart contracts to complete Off-chain transactions by constructing state and virtual channels. In this model, we develop an n-party payment system that uses state and virtual channels. The proposed model simultaneously executes different contract instances while they belong to other independent channels. Again, a virtual channel having n-intermediaries takes linear time to resolve payment channel disputes by transferring to the Blockchain. We introduce a global contract GSCC that solves the disputes in constant time in the worst case without including Blockchain. The dispute-solving process does not affect any intermediary node and ensures the intermediary is not losing coins. GSCC stores all the prior information of the active participants. But, GSCC has no communication overhead to other parties and ensures the execution of disputes with total conflict amount. The resultant model guarantees the execution of every contract, fair dispute resolution, and security balance. Our proposed theorems and zero-knowledge proof ensure the security of the n-party model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Nakamoto, S.: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin (2009)

  2. Buterin, V.: A next-generation smart contract and decentralized application platform. White paper, 3(37) 23 (2014)

  3. Blockchain payment network in 2021. https://finance.yahoo.com/news/japan-banking-giant-mufg-plans-090014888.html (2021)

  4. Sahoo, S.S.; Menon, A.R.; Chaurasiya, V.K.: Secure blockchain model for vehicles toll collection by GPS tracking: a case study of India. In: 2022 IEEE India Council International Subsections Conference (INDISCON), pp. 1–6. IEEE (2022)

  5. Chaurasia, V.K.; Yunus, A.; Singh, M.: An overview of smart city: observation, technologies, challenges and blockchain applications. In: Blockchain Technology for Smart Cities, pp. 133–154 (2020)

  6. Jabbar, S.; Lloyd, H.; Hammoudeh, M.; Adebisi, B.; Raza, U.: Blockchain-enabled supply chain: analysis, challenges, and future directions. Multimedia Syst. 27(4), 787–806 (2021)

    Article  Google Scholar 

  7. Tariq, N.; Asim, M.; Al-Obeidat, F.; Zubair Farooqi, M.; Baker, T.; Hammoudeh, M.; Ghafir, I.: The security of big data in fog-enabled iot applications including blockchain: a survey. Sensors 19(8), 1788 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Hashim, F.; Shuaib, K.; Zaki, N.: Sharding for scalable blockchain networks. SN Comput. Sci. 4(1), 1–17 (2023)

    Google Scholar 

  9. Poon, J.; Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016)

  10. Network, R.: What is the Raiden network (2019)

  11. Miller, A.; Bentov, I.; Kumaresan, R.; McCorry, P.: Sprites: payment channels that go faster than lightning. CoRR abs/1702.05812 306 (2017)

  12. Dziembowski, S.; Eckey, L.; Faust, S.; Malinowski, D.: Perun: virtual payment channels over cryptographic currencies. IACR Cryptol. ePrint Arch. 2017, 635 (2017)

    Google Scholar 

  13. Dziembowski, S.; Faust, S.; Hostáková, K.: General state channel networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 949–966 (2018)

  14. Dziembowski, S.; Eckey, L.; Faust, S.; Hesse, J.; Hostáková, K.: Multi-party virtual state channels. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 625–656. Springer (2019)

  15. Zamani, M.; Movahedi, M.; Raykova, M.: Rapidchain: scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 931–948 (2018)

  16. Wang, G.; Shi, Z.J.; Nixon, M.; Han, S.: Sok: sharding on blockchain. In: Proceedings of the 1st ACM Conference on Advances in Financial Technologies, pp. 41–61 (2019)

  17. Hao, Z.; Ji, R.; Li, Q.: Fastpay: a secure fast payment method for edge-iot platforms using blockchain. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 410–415. IEEE (2018)

  18. Dang, H.; Dinh, T.T.A.; Loghin, D.; Chang, E.C.; Lin, Q.; Ooi, B.C.: Towards scaling blockchain systems via sharding. In: Proceedings of the 2019 International Conference on Management of Data, pp. 123–140 (2019)

  19. Eberhardt, J.; Tai, S.: Zokrates-scalable privacy-preserving off-chain computations. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1084–1091. IEEE (2018)

  20. Xu, C.; Zhang, C.; Xu, J.; Pei, J.: Slimchain: scaling blockchain transactions through off-chain storage and parallel processing. Proc. VLDB Endow. 14(11), 2314–2326 (2021)

    Article  Google Scholar 

  21. Kumar, R.; Marchang, N.; Tripathi, R.: Distributed off-chain storage of patient diagnostic reports in healthcare system using ipfs and blockchain. In: 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 1–5. IEEE (2020)

  22. Lee, S.; Kim, H.: On the robustness of lightning network in bitcoin. Pervasive Mob. Comput. 61, 101108 (2020)

  23. Zabka, P.; Foerster, K.T.; Schmid, S.; Decker, C.: A centrality analysis of the lightning network. arXiv preprint arXiv:2201.07746 (2022)

  24. Waugh, F.; Holz, R.: An empirical study of availability and reliability properties of the bitcoin lightning network. arXiv preprint arXiv:2006.14358 (2020)

  25. Zhang, J.; Li, C.G.; You, C.; Qi, X.; Zhang, H.; Guo, J.; Lin, Z.: Self-supervised convolutional subspace clustering network. In: 2019 IEEE CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5468–5477 (2019)

  26. Gudgeon, L.; Moreno-Sanchez, P.; Roos, S.; McCorry, P.; Gervais, A.: Sok: off the chain transactions. IACR Cryptol. ePrint Arch. 2019, 360 (2019)

    Google Scholar 

  27. Zhong, L.; Wu, Q.; Xie, J.; Guan, Z.; Qin, B.: A secure large-scale instant payment system based on blockchain. Comput. Secur. 84, 349–364 (2019)

    Article  Google Scholar 

  28. Poon, J.; Buterin, V.: Plasma: scalable autonomous smart contracts. White paper, pp. 1–47 (2017)

  29. Tairi, E.; Moreno-Sanchez, P.; Maffei, M.: A 2 l: anonymous atomic locks for scalability in payment channel hubs. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1834–1851. IEEE (2021)

  30. Walshe, M.; Epiphaniou, G.; Al-Khateeb, H.; Hammoudeh, M.; Katos, V.; Dehghantanha, A.: Non-interactive zero knowledge proofs for the authentication of iot devices in reduced connectivity environments. Ad Hoc Netw. 95, 101988 (2019)

  31. Unal, D.; Hammoudeh, M.; Khan, M.A.; Abuarqoub, A.; Epiphaniou, G.; Hamila, R.: Integration of federated machine learning and blockchain for the provision of secure big data analytics for internet of things. Comput. Secur. 109, 102393 (2021)

  32. Yang, X.; Li, W.: A zero-knowledge-proof-based digital identity management scheme in blockchain. Comput. Secur. 99, 102050 (2020)

    Article  Google Scholar 

  33. Li, W.; Guo, H.; Nejad, M.; Shen, C.C.: Privacy-preserving traffic management: a blockchain and zero-knowledge proof inspired approach. IEEE Access 8, 181733–181743 (2020)

  34. Canetti, R.; Lindell, Y.; Ostrovsky, R.; Sahai, A.: Universally composable two-party and multi-party secure computation. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 494–503 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Sangram Sahoo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.S., Menon, A.R. & Chaurasiya, V.K. Blockchain Based n-party Virtual Payment Model with Concurrent Execution. Arab J Sci Eng 49, 3285–3312 (2024). https://doi.org/10.1007/s13369-023-07899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07899-2

Keywords

Navigation