Skip to main content
Log in

γ-Irradiated Chitosan Stabilized Silver Nanoparticles as Novel Colorimetric Sensors for Mercury(II) and Iron(II) Detections in Real Samples

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This contribution presents a novel method for simple and rapid colorimetric detection of Hg(II) and Fe(II) ions in real samples using silver nanoparticles (AgNPs). The AgNPs were green-synthesized in aqueous solution using γ-irradiated chitosan as a reducing and stabilizing agent. The γ-chitosan stabilized AgNPs were found to be spherical with a diameter of 11.39 ± 2.23 nm. The AgNPs are highly selective for Hg(II) and Fe(II) ions, and when Hg(II) is present in solution, the yellowish AgNPs solution is turned to light yellow, while in the presence of Fe(II) the color of the AgNPs solution is changed to dark brown. The change of solution color is proposed via (i) The reoxidation of Ag(0) in AgNPs to Ag(I) for the Hg(II) detection and (ii) The aggregation of AgNPs in solution for the Fe(II) detection. Under optimal conditions, the method exhibits good linearity from 0.5 to 5.0 ppm (r2 = 0.9965) for Hg(II) and from 0.05 to 10.0 ppm (r2 = 0.9994) for Fe(II). The limit of detections (LODs) for Hg(II) and Fe(II) analyses are 0.22 and 0.18 ppm, respectively. Tap waters spiked with both ions show excellent percentage recoveries (93.48–99.53%) with good precision (%RSD < 5%). The developed method was for the first time successfully applied to the assessment of Fe(II) contents in pharmaceutical products, and has potential to be developed as an effective detection kit for assessing Hg(II) and Fe(II) ions in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

WHO:

World Health Organization

AAS/AES:

Atomic absorption/emission spectrometry

ICP-MS:

Inductively coupled plasma spectrometry

SPR:

Surface plasmon resonance

UV-Vis:

Ultraviolet-visible

FTIR:

Fourier transform infrared

TEM:

Transmission electron microscope

SEM:

Scanning electron micrographs

EDX:

Energy-dispersive X-ray spectrometer

FAAS:

Flame atomic absorption spectroscopy

AOAC:

Association of Official Analytical Chemists

LOD:

Limit of detection

LOQ:

Limit of quantification

ppm:

Parts per million

SD:

Standard deviation

ND:

Not detected

ΔA:

Absorbance ratio

API:

Active pharmaceutical ingredients

γ:

Gamma

AgNPs:

Silver nanoparticles

References

  1. Park, J.D.; Zheng, W.: Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 45(6), 344–352 (2012). https://doi.org/10.3961/jpmph.2012.45.6.344

    Article  Google Scholar 

  2. Abbaspour, N.; Hurrell, R.; Kelishadi, R.: Review on iron and its importance for human health. J. Res. Med. Sci. 19(2), 164–174 (2014)

    Google Scholar 

  3. Shrivastava, P.; Jain, V.K.; Nagpal, S.: Nanoparticle intervention for heavy metal detection: a review. Environ. Nanotechnol. Monit. Manag. 17, 100667 (2022). https://doi.org/10.1016/j.enmm.2022.100667

    Article  Google Scholar 

  4. Fakayode, S.O.; King, A.G.; Yakubu, M.; Mohammed, A.K.; Pollard, D.A.: Determination of Fe content of some food items by flame atomic absorption spectroscopy (FAAS): a guided-inquiry learning experience in instrumental analysis laboratory. J. Chem. Educ. 89(1), 109–113 (2012). https://doi.org/10.1021/ed1011585

    Article  Google Scholar 

  5. Shamspur, T.; Sheikhshoaie, I.; Mashhadizadeh, M.H.: Flame atomic absorption spectroscopy (FAAS) determination of iron(iii) after preconcentration on to modified analcime zeolite with 5-((4-nitrophenylazo)-N-(2′,4′-dimethoxyphenyl))salicylaldimine by column method. J. Anal. At. Spect. 20(5), 476–478 (2005). https://doi.org/10.1039/B416097E

    Article  Google Scholar 

  6. Singh, N.; Chauhan, S.; Singh, K.; Saud, T.; Saxena, M.; Soni, D.; Mandal, T.K.; Bassin, J.K.; Gupta, P.K.: Determination of arsenic and mercury metals in suspended particulate matter by flame/flameless atomic absorption spectrometer. Atmos. Pollut. Res. 1(2), 112–117 (2010). https://doi.org/10.5094/APR.2010.014

    Article  Google Scholar 

  7. Ozbek, N.; Akman, S.: Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry. Food Chem. 200, 245–248 (2016). https://doi.org/10.1016/j.foodchem.2016.01.043

    Article  Google Scholar 

  8. Astolfi, M.L.; Protano, C.; Marconi, E.; Piamonti, D.; Massimi, L.; Brunori, M.; Vitali, M.; Canepari, S.: Simple and rapid method for the determination of mercury in human hair by cold vapour generation atomic fluorescence spectrometry. Microchem. J. 150, 104186 (2019). https://doi.org/10.1016/j.microc.2019.104186

    Article  Google Scholar 

  9. Rodrigues, S.S.M.; Lima, A.S.; Teixeira, L.S.G.; Korn, M.D.G.A.; Santos, J.L.M.: Determination of iron in biodiesel based on fluorescence quenching of CdTe quantum dots. Fuel 117, 520–527 (2014). https://doi.org/10.1016/j.fuel.2013.09.045

    Article  Google Scholar 

  10. dos Santos, J.S.; de la Guárdia, M.; Pastor, A.; dos Santos, M.L.P.: Determination of organic and inorganic mercury species in water and sediment samples by HPLC on-line coupled with ICP-MS. Talanta 80(1), 207–211 (2009). https://doi.org/10.1016/j.talanta.2009.06.053

    Article  Google Scholar 

  11. Terán-Baamonde, J.; Bouchet, S.; Tessier, E.; Amouroux, D.: Development of a large volume injection method using a programmed temperature vaporization injector–gas chromatography hyphenated to ICP-MS for the simultaneous determination of mercury, tin and lead species at ultra-trace levels in natural waters. J. Chromatogr. A 1547, 77–85 (2018). https://doi.org/10.1016/j.chroma.2018.02.056

    Article  Google Scholar 

  12. Shariff, R.; Aachary, A.A.; Pacquette, L.H.; Mittal, A.K.; Girdhar, R.: Analytical method validation and determination of iron and phosphorus in vegetable oil by inductively coupled plasma-mass spectrometry with microwave assisted digestion. Anal. Lett. 51(11), 1774–1788 (2018). https://doi.org/10.1080/00032719.2017.1387554

    Article  Google Scholar 

  13. Karthika, A.; Ramasamy Raja, V.; Karuppasamy, P.; Suganthi, A.; Rajarajan, M.: Electrochemical behaviour and voltammetric determination of mercury (II) ion in cupric oxide/poly vinyl alcohol nanocomposite modified glassy carbon electrode. Microchem. J. 145, 737–744 (2019). https://doi.org/10.1016/j.microc.2018.11.030

    Article  Google Scholar 

  14. Locatelli, C.; Melucci, D.: Voltammetric determination of ultra-trace total mercury and toxic metals in meals. Food Chem. 130(2), 460–466 (2012). https://doi.org/10.1016/j.foodchem.2011.07.070

    Article  Google Scholar 

  15. Qu, J.-W.; Song, P.; Gong, X.; Ruan, M.-B.; Xu, W.-L.: Electroanalysis of iron in groundwater by defective carbon black modified electrode. Chin. J. Anal. Chem. 49(6), e21112–e21117 (2021). https://doi.org/10.1016/S1872-2040(21)60106-8

    Article  Google Scholar 

  16. Ding, Y.; Wang, S.; Li, J.; Chen, L.: Nanomaterial-based optical sensors for mercury ions. TrAC, Trends Anal. Chem. 82, 175–190 (2016). https://doi.org/10.1016/j.trac.2016.05.015

    Article  Google Scholar 

  17. Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L.: Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. J. Hazard. Mater. 441, 129889 (2023). https://doi.org/10.1016/j.jhazmat.2022.129889

    Article  Google Scholar 

  18. Buledi, J.A.; Amin, S.; Haider, S.I.; Bhanger, M.I.; Solangi, A.R.: A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ. Sci. Pollut. Res. Int. 28(42), 58994–59002 (2021). https://doi.org/10.1007/s11356-020-07865-7

    Article  Google Scholar 

  19. Xie, Y.: Colorimetric determination of Hg(II) via the gold amalgam induced deaggregation of gold nanoparticles. Microchim. Acta 185(7), 351 (2018). https://doi.org/10.1007/s00604-018-2900-9

    Article  Google Scholar 

  20. Li, Y.; Tang, L.; Zhu, C.; Liu, X.; Wang, X.; Liu, Y.: Fluorescent and colorimetric assay for determination of Cu(II) and Hg(II) using AuNPs reduced and wrapped by carbon dots. Microchim. Acta 189(1), 10 (2021). https://doi.org/10.1007/s00604-021-05111-6

    Article  Google Scholar 

  21. Lou, T.; Chen, Z.; Wang, Y.; Chen, L.: Blue-to-Red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl. Mater. Interfaces. 3(5), 1568–1573 (2011). https://doi.org/10.1021/am200130e

    Article  Google Scholar 

  22. Chen, L.; Fu, X.; Lu, W.; Chen, L.: Highly Sensitive and Selective Colorimetric Sensing of Hg2+ Based on the Morphology Transition of Silver Nanoprisms. ACS Appl. Mater. Interfaces. 5(2), 284–290 (2013). https://doi.org/10.1021/am3020857

    Article  Google Scholar 

  23. Chen, L.; Li, J.; Chen, L.: Colorimetric detection of mercury species based on functionalized gold nanoparticles. ACS Appl. Mater. Interfaces. 6(18), 15897–15904 (2014). https://doi.org/10.1021/am503531c

    Article  Google Scholar 

  24. Nguyen, T.H.A.; Nguyen, V.-C.; Phan, T.N.H.; Le, V.T.; Vasseghian, Y.; Trubitsyn, M.A.; Nguyen, A.-T.; Chau, T.P.; Doan, V.-D.: Novel biogenic silver and gold nanoparticles for multifunctional applications: Green synthesis, catalytic and antibacterial activity, and colorimetric detection of Fe(III) ions. Chemosphere 287, 132271–135564 (2022). https://doi.org/10.1016/j.chemosphere.2021.132271

    Article  Google Scholar 

  25. Prema, P.; Veeramanikandan, V.; Rameshkumar, K.; Gatasheh, M.K.; Hatamleh, A.A.; Balasubramani, R.; Balaji, P.: Statistical optimization of silver nanoparticle synthesis by green tea extract and its efficacy on colorimetric detection of mercury from industrial waste water. Environ. Res. 204, 111915 (2022). https://doi.org/10.1016/j.envres.2021.111915

    Article  Google Scholar 

  26. Sabela, M.; Balme, S.; Bechelany, M.; Janot, J.-M.; Bisetty, K.: A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv. Eng. Mater. 19(12), 1700270 (2017). https://doi.org/10.1002/adem.201700270

    Article  Google Scholar 

  27. Govindan, S.; Nivethaa, E.A.K.; Saravanan, R.; Narayanan, V.; Stephen, A.: Synthesis and characterization of chitosan–silver nanocomposite. Appl. Nanosci. 2(3), 299–303 (2012). https://doi.org/10.1007/s13204-012-0109-5

    Article  Google Scholar 

  28. Venkatesham, M.; Ayodhya, D.; Madhusudhan, A.; Veera Babu, N.; Veerabhadram, G.: A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Appl. Nanosci. 4(1), 113–119 (2014). https://doi.org/10.1007/s13204-012-0180-y

    Article  Google Scholar 

  29. Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M.: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 8(1), 93 (2013). https://doi.org/10.1186/1556-276x-8-93

    Article  Google Scholar 

  30. Torabfam, M.; Jafarizadeh-Malmiri, H.: Microwave-enhanced silver nanoparticle synthesis using chitosan biopolymer: optimization of the process conditions and evaluation of their characteristics. Green Process. Synthesis 7(6), 530–537 (2018). https://doi.org/10.1515/gps-2017-0139

    Article  Google Scholar 

  31. Zaheer, Z.: Chitosan-capped silver nanoparticles: fabrication, oxidative dissolution, sensing properties, and antimicrobial activity. J. Polym. Res. 28(9), 348 (2021). https://doi.org/10.1007/s10965-021-02673-0

    Article  Google Scholar 

  32. Mirajkar, S.; Rathod, P.; Pawar, B.; Penna, S.; Dalvi, S.: γ-Irradiated chitosan mediates enhanced synthesis and antimicrobial properties of chitosan-silver (Ag) Nanocomposites. ACS Omega 6(50), 34812–34822 (2021). https://doi.org/10.1021/acsomega.1c05358

    Article  Google Scholar 

  33. Lim, L.-Y.; Khor, E.; Koo, O.: γ Irradiation of chitosan. J. Biomed. Mater. Res. 43(3), 282–290 (1998). https://doi.org/10.1002/(SICI)1097-4636(199823)43:3%3c282::AID-JBM9%3e3.0.CO;2-J

    Article  Google Scholar 

  34. Susilowati, E.: Maryani; Ashadi: Green synthesis of silver-chitosan nanocomposite and their application as antibacterial material. J. Phys: Conf Ser 1153, 012135 (2019). https://doi.org/10.1088/1742-6596/1153/1/012135

    Article  Google Scholar 

  35. Rezazadeh, N.H.; Buazar, F.; Matroodi, S.: Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Sci. Rep. 10(1), 19615 (2020). https://doi.org/10.1038/s41598-020-76726-7

    Article  Google Scholar 

  36. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  37. Koronkiewicz, S.: Photometric determination of iron in pharmaceutical formulations using double-beam direct injection flow detector. Molecules 26(15), 4498 (2021)

    Article  Google Scholar 

  38. Murugan, K.; Jaganathan, A.; Suresh, U.; Rajaganesh, R.; Jayasanthini, S.; Higuchi, A.; Kumar, S.; Benelli, G.: Towards bio-encapsulation of chitosan-silver nanocomplex? impact on malaria mosquito vectors, human breast adenocarcinoma cells (MCF-7) and behavioral traits of non-target fishes. J. Cluster Sci. 28(1), 529–550 (2017). https://doi.org/10.1007/s10876-016-1129-1

    Article  Google Scholar 

  39. Khwannimit, D.; Maungchang, R.; Rattanakit, P.: Green synthesis of silver nanoparticles using Clitoria ternatea flower: an efficient catalyst for removal of methyl orange. Int J. Environ. Anal. Chem. 102, 5247–5263 (2020). https://doi.org/10.1080/03067319.2020.1793974

    Article  Google Scholar 

  40. Roberts, G.A.F.: Chitin chemistry. Macmillan, London (1992)

    Book  Google Scholar 

  41. El-Rafie, H.M.; El-Rafie, M.H.; Zahran, M.K.: Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohyd. Polym. 96(2), 403–410 (2013). https://doi.org/10.1016/j.carbpol.2013.03.071

    Article  Google Scholar 

  42. Sen, I.K.; Mandal, A.K.; Chakraborti, S.; Dey, B.; Chakraborty, R.; Islam, S.S.: Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int. J. Biol. Macromol. 62, 439–449 (2013). https://doi.org/10.1016/j.ijbiomac.2013.09.019

    Article  Google Scholar 

  43. Firdaus, M.L.; Fitriani, I.; Wyantuti, S.; Hartati, Y.W.; Khaydarov, R.; McAlister, J.A.; Obata, H.; Gamo, T.: Colorimetric detection of Mercury(II) ion in aqueous solution using silver nanoparticles. Anal. Sci. 33(7), 831–837 (2017). https://doi.org/10.2116/analsci.33.831

    Article  Google Scholar 

  44. Kumar, V.; Singh, D.K.; Mohan, S.; Bano, D.; Gundampati, R.K.; Hasan, S.H.: Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion. J. Photochem. Photobiol., B 168, 67–77 (2017). https://doi.org/10.1016/j.jphotobiol.2017.01.022

    Article  Google Scholar 

  45. Singh, R.; Mehra, R.; Walia, A.; Gupta, S.; Chawla, P.; Kumar, H.; Thakur, A.; Kaushik, R.; Kumar, N.: Colorimetric sensing approaches based on silver nanoparticles aggregation for determination of toxic metal ions in water sample: a review. Int. J. Environ. Anal. Chem. 103, 13161–21376 (2021). https://doi.org/10.1080/03067319.2021.1873315

    Article  Google Scholar 

  46. Zarlaida, F.; Adlim, M.; Syukri Surbakti, M.; Omar, A.F.: Chitosan-stabilized silver nanoparticles for colorimetric assay of mercury (II) Ions in aqueous system. IOP Conf. Ser: Mater. Sci. Eng. 352(1), 012049–065535 (2018). https://doi.org/10.1088/1757-899X/352/1/012049

    Article  Google Scholar 

  47. May, B.M.M.; Oluwafemi, O.S.: Sugar-reduced gelatin-capped silver nanoparticles with high selectivity for colorimetric sensing of Hg2+ and Fe2+ ions in the midst of other metal ions in aqueous solutions. Int. J. Electrochem. Sci. 11, 8096–8108 (2016). https://doi.org/10.20964/2016.09.29

    Article  Google Scholar 

  48. Burns, D.T.; Danzer, K.; Townshend, A.: Use of the term “recovery” and “apparent recovery” in analytical procedures (IUPAC Recommendations 2002). Pure Appl. Chem. 74(11), 2201–2205 (2002). https://doi.org/10.1351/pac200274112201

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nanomaterials Chemistry Research Unit, Nakhon Si Thammarat Rajabhat University, Thailand for offering the equipment support required for this project. This work is partially supported by the National Research Council of Thailand (N11A650144) chaired by Assoc. Prof. Dr. Duangjai Nacapricha. We are grateful for the financial support from Thailand Institute of Nuclear Technology (Public Organization). Y.T. gratefully acknowledges Asst. Prof. Dr. Parawee Rattanakit for helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

YT Conceptualization, visualization, methodology, formal analysis, project administration, writing—original draft, and writing—review & editing. NJ Investigation, formal analysis, and visualization. TW Formal analysis, visualization, and writing—review & editing. PN Writing—review & editing. BN Writing—review & editing. NS Writing—review & editing. PS Funding acquisition. NL Funding acquisition. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Yanisa Thepchuay.

Ethics declarations

Conflict of interests

All the authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7139 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thepchuay, Y., Jommala, N., Wonglakhon, T. et al. γ-Irradiated Chitosan Stabilized Silver Nanoparticles as Novel Colorimetric Sensors for Mercury(II) and Iron(II) Detections in Real Samples. Arab J Sci Eng 48, 7825–7839 (2023). https://doi.org/10.1007/s13369-023-07894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07894-7

Keywords

Navigation