Skip to main content
Log in

Evaluation and Optimization of Synthesized Poly (acrylamide-co-acrylic acid) for Tannery Wastewater Treatment via RSM

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Polymeric flocculant holds remarkable potential for treating industrial wastewater. Nonionic polyacrylamide and poly (acrylamide-co-acrylic acid) were synthesized by using aqueous solution polymerization method. Synthesized polymers were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Energy dispersive X-ray spectroscopy (EDX) and intrinsic viscosity. These polymers were applied to the wastewater collected from tannery industry. Parameters such as color, turbidity, and total dissolved solids (TDS) were measured before and after application to check out the efficiency of these polymers. Response surface methodology (RSM) was used to optimize the conditions of pH, polymer dose, alum concentration and shaking time. According to these optimized conditions, approximately 84 experiments were performed. Alum was used as coagulant in consortium with polymers to enhance their efficiency for reduction in color, turbidity and total dissolved solids. Color reduction was found to be reduced up to 96.34% at pH (8.5), polymer dosage (400 mg) and shaking time (3 h). Turbidity was reduced up to 99.42% when the pH was 7, polymer dosage was 300 mg and shaking time was 4 h. Reduction in TDS was up to 55.45% when both the polymers were added in the range of 300 mg, pH of tannery wastewater was adjusted to 7 and shaking time was about 4 h. ANOVA was applied to study the relation between independent factors and their effect on maximum reduction in color, turbidity and TDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. van Vliet, M.T.; Flörke, M.; Wada, Y.: Quality matters for water scarcity. Nat. Geosci. 10(11), 800–802 (2017). https://doi.org/10.1038/ngeo3047

    Article  Google Scholar 

  2. Ercin, A.E.; Hoekstra, A.Y.: Water footprint scenarios for 2050: A global analysis. Environ. Int. 64, 71–82 (2014). https://doi.org/10.1016/j.envint.2013.11.019

    Article  Google Scholar 

  3. Mateo-Sagasta, J.; Raschid-Sally, L.; Theb, A.: Global wastewater and sludge production, treatment and use. In: Drechsel, P.; Qadir, M.; Wichelns, D. (Eds.) wastewater, pp. 15–38. Springer, Dordrecht (2015)

    Chapter  Google Scholar 

  4. Jones, E.R.; van Vliet, M.T.; Qadir, M.; Bierkens, M.F.: Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data. 13(2), 237–254 (2021). https://doi.org/10.5194/essd-13-237-2021

    Article  Google Scholar 

  5. Connor, R.; Renata, A.; Ortigara, C.; Koncagül, E.; Uhlenbrook, S.; Lamizana-Diallo, B.M.; Zadeh, S.M.; Qadir, M.; Kjellén, M.; Sjödin, J.; Hendry, S.: The United Nations world water development report 2017. wastewater: the untapped resource (2017).

  6. Dlamini, N.G.; Basson, A.K.; Pullabhotla, R.V.: Wastewater treatment by a polymeric bioflocculant and iron nanoparticles synthesized from a bioflocculant. Polymers 12(7), 1618 (2020). https://doi.org/10.3390/polym12071618

    Article  Google Scholar 

  7. Ahmed, J.; Thakur, A.; Goyal, A.: Industrial Wastewater and Its Toxic Effects (2021). https://doi.org/10.1039/9781839165399-00001

  8. Dao, V.H.; Cameron, N.R.; Saito, K.: Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym. Chem. 7(1), 11–25 (2016). https://doi.org/10.1039/C5PY01572C

    Article  Google Scholar 

  9. Lee, C.S.; Robinson, J.; Chong, M.F.: A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 92(6), 489–508 (2014). https://doi.org/10.1016/j.psep.2014.04.010

    Article  Google Scholar 

  10. Zaman, K.U.; Abbas, N.; Irshad, M.; Zehra, S.; Butt, M.T.; Shehzad, K.; Mahmood, H.-R.: Treatability study of synthesized silica nanoparticles to reduce pollution load of industrial wastewater. Int. J. Environ. Sci. Technol. (2022). https://doi.org/10.1007/s13762-022-03972-9

    Article  Google Scholar 

  11. Singh, S.; Sharma, A.; Malviya, R.: Industrial wastewater: health concern and treatment strategies. The Open Biol J. 9(1), 1–10 (2021)

    Article  Google Scholar 

  12. Yue, Q.; Gao, B.Y.; Wang, Y.; Zhang, H.; Sun, X.; Wang, S.G.; Gu, R.R.: Synthesis of polyamine flocculants and their potential use in treating dye wastewater. J. Hazard. Mater. 152(1), 221–227 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.089

    Article  Google Scholar 

  13. Yin, C.-Y.: Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 45(9), 1437–1444 (2010). https://doi.org/10.1016/j.procbio.2010.05.030

    Article  Google Scholar 

  14. Kurniawan, S.B., et al.: What compound inside biocoagulants/bioflocculants is contributing the most to the coagulation and flocculation processes? Sci Total Environ. 806, 150902 (2022)

    Article  Google Scholar 

  15. Muruganandam, L.; Kumar, M.P.S.; Jena, A.; Gulla, S.; Godhwani, B.: Treatment of waste water by coagulation and flocculation using biomaterials. IOP Conf. Ser: Mater Sci Eng. 263, 032006 (2017)

    Article  Google Scholar 

  16. Zhao, G.; Dai, C.; Wang, S.; Zhao, M.: Synthesis and application of nonionic polyacrylamide with controlled molecular weight for fracturing in low permeability oil reservoirs. J. Appl Polym Sci. 132(11), 41637 (2015). https://doi.org/10.1002/app.41637

    Article  Google Scholar 

  17. Jha, A.; Agrawal, S.S.; Mishra, A.; Rai, J.P.: Synthesis, characterization and flocculation efficiency of poly (acrylamide-co-acrylic acid) in tannery waste-water. Iran Polym. J. 10(2), 85–90 (2001)

    Google Scholar 

  18. Jamshidi, H.; Rabiee, A.: Synthesis and characterization of acrylamide-based anionic copolymer and investigation of solution properties. Adv Mater Sc. Eng. (2014). https://doi.org/10.1155/2014/728675

    Article  Google Scholar 

  19. Craciun, G.; Ighigeanu, D.; Manaila, E.; Stelescu, M.D.: Synthesis and characterization of poly (acrylamide-co-acrylic acid) flocculant obtained by electron beam irradiation. Mater. Res. 18(5), 984–993 (2015). https://doi.org/10.1590/1516-1439.008715

    Article  Google Scholar 

  20. Majumder, A.; Gupta, A.K.; Ghosal, P.S.; Varma, M.: A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. J. Environ. Chem. Eng. 9(2), 104812 (2021)

    Article  Google Scholar 

  21. Irfan, M.; Butt, T.; Imtiaz, N.; Abbas, N.; Khan, R.A.; Shafique, A.: The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate. Arabian J. Chem. 10, S2307–S2318 (2017). https://doi.org/10.1016/j.arabjc.2013.08.007

    Article  Google Scholar 

  22. Benalia, M.C.; Youcef, L.; Bouaziz, M.G.; Achour, S.; Menasra, H.; M,: Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization. Arab. J. Sci. Eng. 47, 5587–5599 (2021)

    Article  Google Scholar 

  23. Darvishmotevalli, M.; Zarie, A.; Moradnia, M.; Noorisepehr, M.; Mohammadi, H.: Optimization of saline wastewater treatment using electrochemical oxidation process: prediction by RSM method. MethodsX. 6, 1101–1113 (2019). https://doi.org/10.1016/j.mex.2019.03.015

    Article  Google Scholar 

  24. Pambi, R.; Musonge, P.: Application of response surface methodology (RSM) in the treatment of final effluent from the sugar industry using Chitosan. WIT Trans. Ecol. Environ. 209, 209–219 (2016). https://doi.org/10.2495/WP160191

    Article  Google Scholar 

  25. Tomar, R.S.; Gupta, I.; Singhal, R.; Nagpal, A.K.: Synthesis of poly (acrylamide-co-acrylic acid)-based super-absorbent hydrogels by gamma radiation: study of swelling behaviour and network parameters. Des. Monomers Polym. 10(1), 49–66 (2007). https://doi.org/10.1163/156855507779763685

    Article  Google Scholar 

  26. Thippeswamy, M.; Puttagiddappa, M.G.; Thippaiah, D.; Satyanarayan, N.D.: Poly (acrylamide-co-acrylic acid) synthesized, moxifloxacin drug-loaded hydrogel: Characterization and evaluation studies. J. App Pharm Sci. 11(12), 074–081 (2021). https://doi.org/10.7324/JAPS.2021.1101205

    Article  Google Scholar 

  27. Wei, C.; Xu, Z.; Han, F.; Xu, W.; Gu, J.; Ou, M.; Xu, X.: Preparation and characterization of poly (acrylic acid-co-acrylamide)/montmorillonite composite and its application for methylene blue adsorption. Colloid. Polym. Sci. 296(4), 653–667 (2018). https://doi.org/10.1007/s00396-018-4277-z

    Article  Google Scholar 

  28. Lee, K.E.; Khan, I.; Morad, N.; Teng, T.T.; Poh, B.T.: Thermal behavior and morphological properties of novel magnesium salt–polyacrylamide composite polymers. Polym. Compos. 32(10), 1515–1522 (2011). https://doi.org/10.1002/pc.21180

    Article  Google Scholar 

  29. Klein, J.; Heitzmann, R.: Preparation and characterization of poly (acrylamide-co-acrylic acid). Makromol. Chem. 179(8), 1895–1904 (1978). https://doi.org/10.1002/macp.1978.021790803

    Article  Google Scholar 

  30. Quackenbos, H.M.: Relation between intrinsic viscosity and molecular weight. J. Appl. Polym. Sci. 25(7), 1435–1442 (1980). https://doi.org/10.1002/app.1980.070250717

    Article  Google Scholar 

  31. Mahmudabadi, T.Z.; Ebrahimi, A.A.; Eslami, H.; Mokhtari, M.; Salmani, M.H.; Ghaneian, M.H.; Mohamadzadeh, M.; Pakdaman, M.: Optimization and economic evaluation of modified coagulation–flocculation process for enhanced treatment of ceramic-tile industry wastewater. AMB Expr. 8(1), 1–12 (2018). https://doi.org/10.1186/s13568-018-0702-4

    Article  Google Scholar 

  32. Dawood, A.S.; Li, Y.L.: Response surface methodology (RSM) for wastewater flocculation by a novel (AlCl3-PAM) hybrid polymer. Adv. Mat. Res. 560–561, 529–537 (2012). https://doi.org/10.4028/www.scientific.net/AMR.560-561.529

    Article  Google Scholar 

  33. Tetteh, E.K.; Rathilal, S.: Effects of a polymeric organic coagulant for industrial mineral oil wastewater treatment using response surface methodology (RSM). Water 44(2), 155–161 (2018)

    Google Scholar 

  34. Obidike, L.; Madigoe, E.: Development and optimization of sewage wastewater treatment program. Appl Water Sci. 11(12), 187 (2021). https://doi.org/10.1007/s13201-021-01526-x

    Article  Google Scholar 

  35. Dawood, A.S.; Li, Y.: Wastewater Flocculation Using a New Hybrid Copolymer: Modeling and Optimization by Response Surface Methodology. Pol. J. Environ. Stud. 23(1), 1 (2014)

    Google Scholar 

  36. Lee, K.E.; Teng, T.T.; Morad, N.; Poh, B.; Mahalingam, M.: Flocculation activity of novel ferric chloride–polyacrylamide (FeCl3-PAM) hybrid polymer. Desalination 266(1–3), 108–113 (2011). https://doi.org/10.1016/j.desal.2010.08.009

    Article  Google Scholar 

  37. Dawood, A.S.; Li, Y.: Modeling and optimization of new flocculant dosage and pH for flocculation: removal of pollutants from wastewater. Water 5(2), 342–355 (2013). https://doi.org/10.3390/w5020342

    Article  Google Scholar 

  38. Kim, S.-C.: Application of response surface method as an experimental design to optimize coagulation–flocculation process for pre-treating paper wastewater. J. Ind. Eng. Chem. 38, 93–102 (2016). https://doi.org/10.1016/j.jiec.2016.04.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naeem Abbas.

Ethics declarations

Conflict of Interests

The authors have no financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, M., Abbas, N., Asghar, A. et al. Evaluation and Optimization of Synthesized Poly (acrylamide-co-acrylic acid) for Tannery Wastewater Treatment via RSM. Arab J Sci Eng 49, 231–259 (2024). https://doi.org/10.1007/s13369-023-07885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07885-8

Keywords

Navigation