Skip to main content
Log in

Catalytic Activity Improvement of Carbon-Doped Bimetal–Nitrogen Using Various Sacrificial Template

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The innovation of catalyst material for oxygen reduction reaction with a combination of metal precursors had been successfully synthesized using a variety of templates and post-treatment. The combination of two metal precursors consisting of transition metals (such as Fe, Ni, and Co) with the same metal ratio of 1:1 may affect the catalytic activity and physical properties. This research used 2,6-diaminopyridine as nitrogen-containing carbon material acting as a nitrogen and carbon source. This study used two types of hard templates which were LUDOX HS-40 colloidal silica and Montmorillonite K10 (MMT-K10) to optimize a dual metal with a porous nitrogen-doped catalyst. In addition, this research used a pyrolysis process at a temperature of 800 °C for 2 h within a nitrogen atmosphere. After that, post-treatment was carried out by leaching acid using a 0.5 M H2SO4 solution for 2 h. As a result, LUDOX HS-40 template has provided an advantage in increasing the oxygen reduction reaction (ORR) activity. In addition, the FeNi/CN-L catalyst yielded the highest catalytic activity with an electron transfer number of 3.61. LUDOX HS-40 template will make the shape of the FeNi/CN-L catalyst particles become irregular which in turn will increase ORR activity. This phenomenon is due to the electrostatic force from carbon to metal ions in which metal interactions with carbon particles occur. Thus, it can increase catalytic activity during the oxygen reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dong, D.; Guo, X.; Ma, C., et al.: Ni–Fe bimetallic core–shell structured catalysts supported on biomass longan aril derived nitrogen doped carbon for efficient oxygen reduction and evolution performance. Mater. Today Commun. 24, 1–7 (2020)

    Google Scholar 

  2. Widiyastuti, W.; Rois, M.F.; Setyawan, H., et al.: Carbonization of lignin extracted from liquid waste of coconut coir delignification. Indones. J. Chem. 20, 842 (2020)

    Article  CAS  Google Scholar 

  3. Rois, M.F.; Widiyastuti, W.; Setyawan, H., et al.: Preparation of activated carbon from alkali lignin using novel one-step process for high electrochemical performance application. Arab. J. Chem. 14, 103162 (2021)

    Article  CAS  Google Scholar 

  4. Li, Y.; Feng, Y.; Li, L., et al.: PBA@PPy derived N-doped mesoporous carbon nanocages embedded with FeCo alloy nanoparticles for enhanced performance of oxygen reduction reaction. J. Alloys Compd. 823, 1–9 (2020)

    Article  Google Scholar 

  5. Wang, H.Y.; Weng, C.C.; Yuan, Z.Y.: Insights into efficient transition metal–nitrogen/carbon oxygen reduction electrocatalysts. J. Energy Chem. 56, 470–485 (2021)

    Article  CAS  Google Scholar 

  6. Ren, G.; Huang, B.; Li, C., et al.: Facile and template-free strategy to construct N, P co-doped porous carbon nanosheets as a highly efficient electrocatalyst towards oxygen reduction reaction. J. Electroana.l Chem. 877, 114732 (2020)

    Article  CAS  Google Scholar 

  7. Liu, Q.; Cao, S.; Fu, Y., et al.: Trimetallic FeCoNi–N/C nanofibers with high electrocatalytic activity for oxygen reduction reaction in sulfuric acid solution. J. Electroanal. Chem. 813, 52–57 (2018)

    Article  CAS  ADS  Google Scholar 

  8. Guo, J.; Shu, J.; Nie, J., et al.: Fe/Ni bimetal and nitrogen co-doped porous carbon fibers as electrocatalysts for oxygen reduction reaction. J. Colloid Interface Sci. 560, 330–337 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Rois, M.F.; Ramadhani Alya Sasono, S.; Widiyastuti, W., et al.: High-performance electrocatalyst made from lignosulfonate nanofiber composited with manganese dioxide without carbonation process. Adv. Powder Technol. 33, 103572 (2022)

    Article  CAS  Google Scholar 

  10. Setyowati, V.A.; Susanti, D.; Noerochim, L., et al.: Investigation of carbon composition for electrochemical properties as pemfc cathode catalyst. In: Materials Science Forum, pp. 13–18. Trans Tech Publications Ltd (2019)

  11. Yan, X.; Yao, Y.; Chen, Y.: Highly active and stable Fe–N–C oxygen reduction electrocatalysts derived from electrospinning and in situ pyrolysis. Nanoscale Res. Lett. 13, 1–6 (2018)

    Article  Google Scholar 

  12. Yang, L.; Zeng, X.; Wang, D., et al.: Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn–air battery. Energy Storage Mater. 12, 277–283 (2018)

    Article  Google Scholar 

  13. Zhao, H.; Zhang, Y.; Li, L., et al.: Synthesis of an ordered porous carbon with the dual nitrogen-doped interfaces and its ORR catalysis performance. Chin. Chem. Lett. 32, 140–145 (2021)

    Article  CAS  Google Scholar 

  14. Daems, N.; Sheng, X.; Vankelecom, I.F.J., et al.: Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2, 4085–4110 (2014)

    Article  CAS  Google Scholar 

  15. Jaouen, F.; Lefèvre, M.; Dodelet, J.P., et al.: Heat-treated Fe/N/C catalysts for O2 electroreduction: Are active sites hosted in micropores? J. Phys. Chem. B 110, 5553–5558 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Ferrero, G.A.; Fuertes, A.B.; Sevilla, M., et al.: Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon (N Y) 106, 179–187 (2016)

    Article  CAS  Google Scholar 

  17. Dou, J.; Qi, M.; Wang, H., et al.: SiO2-templated ferrocenyl porous organic polymer gel derived porous Carbon/Fe2C nanohybrids with interpenetrating macropores as oxygen reduction electrocatalyst for Zn-air batteries. Microporous Mesoporous Mater. 320, 111101 (2021)

    Article  CAS  Google Scholar 

  18. Yao, C.; Yu, J.; Xu, Q., et al.: Interconnected porous nitrogen-doped carbon framework: recoverable template fabrication and excellent electrocatalytic performance for oxygen reduction reaction. J. Taiwan Inst. Chem. Eng. 113, 178–186 (2020)

    Article  CAS  Google Scholar 

  19. Xing, Z.; Jin, R.; Chen, X., et al.: Self-templating construction of N, P-co-doped carbon nanosheets for efficient eletreocatalytic oxygen reduction reaction. Chem. Eng. J. 410, 128015 (2021)

    Article  CAS  Google Scholar 

  20. Jin, X.; Xie, Y.; Zhao, C., et al.: FeCo-based mesoporous carbon shells modified N-doped porous carbon spheres for oxygen reduction reaction. Prog. Nat. Sci. Mater. Int. 31, 527–535 (2021)

    Article  CAS  Google Scholar 

  21. Liang, H.W.; Wei, W.; Wu, Z.S., et al.: Mesoporous metal−nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135, 16002–16005 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Setyowati, V.A.; Rois, M.F.; Widiyastuti, W., et al.: Comparative study of single and bimetal-nitrogen-doped carbon prepared by polymerization and direct pyrolysis. Results Eng. 13, 100332 (2022)

    Article  CAS  Google Scholar 

  23. Gao, K.; Wang, B.; Tao, L., et al.: Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and co-doping. Adv. Mater. 31, 1–11 (2019)

    Article  ADS  Google Scholar 

  24. Sui, Z.Y.; Li, X.; Sun, Z.Y., et al.: Nitrogen-doped and nanostructured carbons with high surface area for enhanced oxygen reduction reaction. Carbon (N Y) 126, 111–118 (2018)

    Article  CAS  Google Scholar 

  25. Setyowati, V.A.; Noerochim, L.; Susanti, D., et al.: High oxygen reduction reaction activity on various iron loading of Fe-PANI/C catalyst for PEM fuel cell. Ionics 26, 813–822 (2019)

    Article  Google Scholar 

  26. Ding, J.; Wang, P.; Ji, S., et al.: N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc–air batteries. Electrochim. Acta 296, 653–661 (2019)

    Article  CAS  Google Scholar 

  27. Guo, Z.; Zhang, Z.; Li, Z., et al.: Well-defined gradient Fe/Zn bimetal organic framework cylinders derived highly efficient iron- and nitrogen-codoped hierarchically porous carbon electrocatalysts towards oxygen reduction. Nano Energy 57, 108–117 (2019)

    Article  CAS  Google Scholar 

  28. Osmieri, L.; Escudero-Cid, R.; Monteverde Videla, A.H.A., et al.: Application of a non-noble Fe–N–C catalyst for oxygen reduction reaction in an alkaline direct ethanol fuel cell. Renew. Energy 115, 226–237 (2018)

    Article  CAS  Google Scholar 

  29. Cai, N.; Yang, H.; Zhang, X., et al.: Bimetallic carbon nanotube encapsulated Fe–Ni catalysts from fast pyrolysis of waste plastics and their oxygen reduction properties. Waste Manag. 109, 119–126 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Z.; Ang, J.; Liu, J., et al.: FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Appl. Catal. B Environ. (2020). https://doi.org/10.1016/j.apcatb.2019.118344

    Article  Google Scholar 

  31. Lyu, D.; Mollamahale, Y.B.; Huang, S., et al.: Ultra-high surface area graphitic Fe–N–C nanospheres with single-atom iron sites as highly efficient non-precious metal bifunctional catalysts towards oxygen redox reactions. J. Catal. 368, 279–290 (2018)

    Article  CAS  Google Scholar 

  32. Wang, Y.; Pan, Y.; Zhu, L., et al.: Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheet for ORR and HER. Carbon (N Y) 146, 671–679 (2019)

    Article  CAS  Google Scholar 

  33. Zhan, T.; Zhang, Y.; Liu, X., et al.: NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. J. Power Sources 333, 53–60 (2016)

    Article  CAS  ADS  Google Scholar 

  34. Wu, T.; Wang, Y.; Zhao, H., et al.: Si doped Fe–N/C catalyst for oxygen reduction reaction directed by ordered mesoporous silica nanospheres template strategy. J. Colloid Interface Sci. 603, 706–715 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Setyowati, V.A.; Huang, H.C.; Liu, C.C., et al.: Effect of iron precursors on the structure and oxygen reduction activity of iron–nitrogen–carbon catalysts. Electrochim. Acta 211, 933–940 (2016)

    Article  CAS  Google Scholar 

  36. Thommes, M.; Kaneko, K.; Neimark, A.V., et al.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  37. Wang, Y.; Luo, E.; Wang, X., et al.: Fe, Cu-codoped metal-nitrogen-carbon catalysts with high selectivity and stability for the oxygen reduction reaction. Chin. Chem. Lett. 32, 506–510 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research received a grant from the Ministry of Education, Culture, Research, and Technology, the Republic of Indonesia with the scheme “Collaborative Research for Higher Education” (Contract No. 073/E5/P6.02.00.PT/2022, 028/SP2H/PT-L/LL7/2022, 06/KP/LPPM/ITATS/2022 and DIPA-023.17.1.690523/2022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Widiyastuti or Vuri Ayu Setyowati.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidatin, N., Rois, M.F., Widiyastuti, W. et al. Catalytic Activity Improvement of Carbon-Doped Bimetal–Nitrogen Using Various Sacrificial Template. Arab J Sci Eng 49, 1555–1565 (2024). https://doi.org/10.1007/s13369-023-07874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07874-x

Keywords

Navigation