Skip to main content

Advertisement

Log in

Irregular SuDoKu Modeling of Solar Photovoltaic Arrays for Partial Shading Optimization

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

When photovoltaic (PV) arrays are subjected to partial shading conditions, the energy generated by the entire system diminishes with the appearance of multiple peaks in the P–V characteristics. A novel configuration for PV modules (PVMs) in an array has been put forth in this paper that aims to increase the output power generated by the array under partial shading conditions. This configuration involves the physical arrangement of PVMs as per the novel irregular SuDoKu (IRS) puzzle pattern connected to each other in a total cross-tied (TCT) arrangement. The electrical connections between the PVMs remain undisturbed in accomplishing this arrangement. The shading effect on PVMs within any single row is significantly reduced by this arrangement of PVMs which, in turn, increases the power generated by the PV array (PVA). Modeling and validations of these PVA configurations (PVACs) are done using MATLAB/SIMULINK. The considered PVACs are evaluated by taking numerous performance factors (i.e., mismatch power losses, efficiency, global maximum power point (GMPP) and the fill factor (FF)). The results of the proposed IRS arrangement are compared with TCT and recently proposed configurations such as SuDoKu, optimalA SuDoKu, Futoshiki SuDoKu, optimalB SuDoKu, improved SuDoKu, modified SuDoKu, hyper SuDoKu and multi-diagonal SuDoKu. The GMPP, FF and efficiency are the highest for the IRS method, with the values being 5894.4 W, 71.88% and 14.08%, respectively. Hence, the IRS is the best method in comparison with the other listed reconfiguration techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

β:

Number of cells connected in series

\(e\) :

Electron charge

\(G\) :

Solar irradiance

\({G}_{\mathrm{STC}}\) :

Solar irradiance at STC

\({I}_{a}\) :

PVA current

\({I}_{\mathrm{out}}\) :

PVM output current

\({I}_{\mathrm{pg}}\) :

Photo generated current

\({I}_{s}\) :

Diode reverse saturation current

\(k\) :

Boltzmann’s constant

\({R}_{\mathrm{series}}\) :

Series resistance of PV cell

\({R}_{\mathrm{shunt}}\) :

Shunt resistance of PV cell

\({V}_{a}\) :

PVA voltage

\({V}_{\mathrm{oc}}\) :

PVM open circuit voltage

\({V}_{\mathrm{out}}\) :

PVM output voltage

\(T\) :

Junction temperature

BL:

Bridge link

FF:

Fill factor

FS:

Futoshiki SuDoKu

GMPP:

Global MPP

HC:

Honeycomb

IRS:

Irregular SuDoKu

IS:

Improved SuDoKu

LMPP:

Local maximum power point

MPL:

Mismatch power losses

MPP:

Maximum power point

MS:

Modified SuDoKu

OPTS:

OptimalB SuDoKu

OS:

OptimalA SuDoKu

PSC:

Partial shading condition

PV:

Photovoltaic

PVA:

PV array

PVAC:

PVA configuration

PVM:

PV module

SP:

Series–parallel

STC:

Standard test condition

TCT:

Total cross tied

References

  1. Wang, Y.-J.; Hsu, P.-C.: Analytical modeling of partial shading and different orientation of photovoltaic modules. IET Renew. Power Gener. 4(3), 272–282 (2010)

    Article  Google Scholar 

  2. Gao, L.; Dougal, R.A.; Liu, S.; Iotova, A.P.: Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions. IEEE Trans. Ind. Electron. 56(5), 1548–1556 (2009)

    Article  Google Scholar 

  3. Patel, H.; Agarwal, V.: MATLAB based modelling to study the effects of partial shading on PV array characteristics. IEEE Trans. Energy Convers. 23(1), 302–310 (2008)

    Article  Google Scholar 

  4. Ji, Y.H.; Jung, D.Y.; Kim, J.G.; Kim, J.H.; Lee, T.W.; Won, C.Y.: A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans. Power Electron. 26(4), 1001–1009 (2011)

    Article  Google Scholar 

  5. Femia, N.; Lisi, G.; Petrone, G.; Spagnuolo, G.; Vitelli, M.: Distributed maximum power point tracking of photovoltaic arrays: novel approach and system analysis. IEEE Trans. Ind. Electron. 55(7), 2610–2621 (2008)

    Article  Google Scholar 

  6. Koutroulis, E.; Blaabjerg, F.: A new technique for tracking the global maximum power point of PV arrays operating under (PSCs). IEEE J. Photo Volta. 2(2), 184–190 (2012)

    Article  Google Scholar 

  7. Paraskevadaki, E.V.; Papathanassiou, S.A.: Evaluation of MPP voltage and power of mc-Si PV modules in partial shading conditions. IEEE Trans. Energy Convers. 26(3), 923–932 (2011)

    Article  Google Scholar 

  8. Woyte, A.; Nijs, J.; Belmans, R.: Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Sol. Energy. 74(3), 217–233 (2003)

    Article  Google Scholar 

  9. Gautam, N.K.; Kaushika, N.D.: An efficient algorithm to simulate the electrical performance of solar photovoltaic arrays. Energy 27(4), 347–361 (2002)

    Article  Google Scholar 

  10. Picault, D.; Raison, B.; Bacha, S.; de la Casa, J.; Aguilera, J.: Forecasting photovoltaic array power production subject to mismatch losses. Sol. Energy. 84(7), 1301–1309 (2010)

    Article  Google Scholar 

  11. Kaushika, N.D.; Gautam, N.K.: Energy yield simulations of interconnected solar PV arrays. IEEE Trans. Energy Convers. 18(1), 127–134 (2003)

    Article  Google Scholar 

  12. Wang, Y.J.; Hsu, P.C.: An investigation on partial shading of PV modules with different connection configurations of PV cells. Energy 36(5), 3069–3078 (2011)

    Article  Google Scholar 

  13. Laudani, A.; Maria Lozito, G.; Lucaferri, V.; Radicioni, M.; Riganti, F.F.: On circuital topologies and reconfiguration strategies for PV systems in partial shading conditions: a review. AIMS Energy. 6(5), 735–763 (2018)

    Article  Google Scholar 

  14. Salameh, Z.M.; Dagher, F.: The effect of electrical array reconfiguration on the performance of a PV-powered volumetric water pump. IEEE Trans. Energy Convers. 5(4), 653–658 (1990)

    Article  Google Scholar 

  15. Nguyen, D.; Lehman, B.: An adaptive solar photovoltaic array using model-based reconfiguration algorithm. IEEE Trans. Ind. Electron. 55(7), 2644–2654 (2008)

    Article  Google Scholar 

  16. Velasco-Quesada, G.; Guinjoan-Gispert, F.; Pique-Lopez, R.; Roman-Lumbreras, M.; Conesa-Roca, A.: Electrical PV array reconfiguration strategy for energy extraction improvement in grid connected systems. IEEE Trans. Ind. Electron. 56(11), 4319–4331 (2009)

    Article  Google Scholar 

  17. Babu, T.S.; Ram, J.P.; Dragicevic, T.; Miyatake, M.; Blaabjerg, F.; Rajasekar, N.: Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions. IEEE Trans. Sustain. Energy. 9(1), 74–85 (2018)

    Article  Google Scholar 

  18. Patnaik, B.; Sharma, P.; Trimurthulu, E.; Duttagupta, S.P.; Agarwal, V.: Reconfiguration strategy for optimization of solar photovoltaic array under non-uniform illumination conditions. Proc Photovolt. Spec. Conf. (PVSC) 56, 1859–1864 (2011)

    Google Scholar 

  19. Parlak, K.Ş: Pv array reconfiguration method under partial shading conditions. Int. J. Electr. Power Energy Syst. 63, 713–721 (2014)

    Article  Google Scholar 

  20. Sai Krishna, G.; Moger, T.: Reconfiguration strategies for reducing partial shading effects in photovoltaic arrays: state of the art. Sol. Energy. 182, 429–452 (2019)

    Article  Google Scholar 

  21. Rao, P.S.; Ilango, G.S.; Nagamani, C.: Maximum power from PV arrays using a fixed configuration under different shading conditions. IEEE J. Photovolt. 2(4), 679–686 (2014)

    Google Scholar 

  22. Yadav, A.S.; Pachauri, R.K.; Chauhan, Y.K.; Choudhury, S.; Singh, R.: Performance enhancement of partially shaded pv array using novel shade dispersion effect on magic-square puzzle configuration. Sol. Energy. 144, 780–797 (2017)

    Article  Google Scholar 

  23. Pachauri, R.; Yadav, A.S.; Chauhan, Y.K.; Sharma, A.; Kumar, V.: Shade dispersion-based photovoltaic array configurations for performance enhancement under partial shading conditions. Int. Trans. Electr. Energy Syst. 28(7), 2556 (2018)

    Article  Google Scholar 

  24. Rani, B.I.; Ilango, G.S.; Nagamani, C.: Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration. IEEE Trans. Sustain. Energy. 4(3), 594–601 (2013)

    Article  Google Scholar 

  25. Potnuru, S.R.; Pattabiraman, D.; Ganesan, S.I.; Chilakapati, N.: Positioning of PV panels for reduction in line losses and mismatch losses in PV array. Renew. Energy. 78, 264–275 (2015)

    Article  Google Scholar 

  26. Sahu, H.S.; Nayak, S.K.; Mishra, S.: Maximizing the power generation of a partially shaded PV array. IEEE J. Emerg. Sel. Topics Power Electron. 4(2), 626–637 (2016)

    Article  Google Scholar 

  27. Krishna, S.G.; Moger, T.: Optimal SuDoKu reconfiguration technique for total-cross-tied PV array to increase power output under non-uniform irradiance. IEEE Trans. Energy Convers. 34(4), 1973–1984 (2019). https://doi.org/10.1109/TEC.2019.2921625

    Article  Google Scholar 

  28. Sai Krishna, G.S.; Moger, T.: Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions. Renew. Sustain. Energy Rev. 109, 333–348 (2019)

    Article  Google Scholar 

  29. Kandipati, R.; Tejavathu, R.: Maximum power enhancement under partial shadings using modified SuDoKu reconfiguration. CSEE J. Power Energy Syst. 99, 1–19 (2020)

    Google Scholar 

  30. Anjum, S.; Mukherjee, V.; Mehta, G.: Advanced SuDoKu-based reconfiguration strategies for maximum power extraction from partially shaded solar photovoltaic array. ASME. J. Sol. Energy Eng. 43(6), 061003 (2021). https://doi.org/10.1115/1.4051090

    Article  Google Scholar 

  31. Anjum, S.; Mukherjee, V.; Mehta, G.: Hyper SuDoKu-based solar photovoltaic array reconfiguration for maximum power enhancement under partial shading conditions. ASME. J. Energy Resour. Technol. 144(3), 031302 (2021). https://doi.org/10.1115/1.4051427

    Article  Google Scholar 

  32. Rayappa, D.A.R.; Kanasottu, A.N.: An image encryption concept based solar photovoltaic array reconfiguration techniques for mismatch mitigation. Energy Sour., Part A: Recovery, Utilization, Environ. Effects. 44(1), 951–972 (2022). https://doi.org/10.1080/15567036.2022.2052383

    Article  Google Scholar 

  33. Kanasottu, A.N.; Rayappa, D.A.R.; Rao, C.V.; Babu, T.S.: Generalized cryptographic image processing approaches using integer-series transformation for solar power optimization under partial shading. Energy Convers. Manag. 116376, 272 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahroz Anjum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, S., Mukherjee, V. Irregular SuDoKu Modeling of Solar Photovoltaic Arrays for Partial Shading Optimization. Arab J Sci Eng 48, 14977–15002 (2023). https://doi.org/10.1007/s13369-023-07864-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07864-z

Keywords

Navigation