Skip to main content
Log in

Effect of Heat Treatment on Microstructure, Mechanical Properties, and Corrosion Performance of 410NiMo Super Martensitic Stainless Steel Cladded on 21CrMoV5-11 by Submerged Arc Welding Process

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effect of heat treatment on microstructure, mechanical properties, and corrosion resistance of 410NiMo super martensitic stainless steel applied by Submerged Arc Welding on 21CrMoV5-11 sublayer has been investigated. The cladded steel was heat treated at different cycles which were; single stage heat treatment (600 °C-6 h), double stage heat treatment (700 °C-2 h & 600 °C-6 h), and austenitizing followed by double stage heat treatment cycles. Results revealed that austenitizing at 1000 °C followed by a double stage treatment improved the impact energy (75j) more than other cycles, due to the formation of austenite and dissolution of carbides and delta ferrite, while the lowest hardness was observed for the welded specimens heat-treated at 600 °C (318HV). It was further shown that the best corrosion resistance (icorr (A/cm2) = 1.02E−9 ± 5E−11 and Ecorr(Vvs Calomel) = − 0.132 ± 0.007) for the cladded steel was obtained by austenitizing the specimen at 1150 °C followed by the double stage treatment, due to the complete dissolution of the delta ferrite phase, chromium carbides, and homogeneous chrome distribution in the clad layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The temperature at which austenite begins to form during heating.

  2. The temperature at which austenite begins to form during heating.

References

  1. Brezinová, J.; Guzanová, A.; Balog, P.: Quality of weld clads applied by saw method in adhesive wear conditions. Mater. Eng. Inz. 20, 12–21 (2013)

    Google Scholar 

  2. Viňáš, J.; Brezinová, J.; Guzanová, A.; Svetlík, J.: Degradation of renovation layers deposited on continuous steel casting rollers by submerged arc welding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 227, 1841–1848 (2013)

    Article  Google Scholar 

  3. Hadizadeh, B.; Bahrami, A.; Eslami, A.; Abdian, K.; Araghi, M.Y.; Etezazi, M.: Establishing the cause of failure in continuous casting rolls. Eng. Fail. Anal. 108, 104346 (2020)

    Article  CAS  Google Scholar 

  4. Viňáš, J.; Brezinová, J.; Guzanová, A.; Balog, P.: Evaluation of the quality of cladding deposited on continuous steel casting rolls. Int. J. Mater. Res. 104, 183–191 (2013)

    Article  Google Scholar 

  5. Tavares, S.S.M.; Rodrigues, C.R.; Pardal, J.M.; Barbosa, E.S.; de Abreu, H.F.G.: Effects of post weld heat treatments on the microstructure and mechanical properties of dissimilar weld of supermartensític stainless steel. Mater. Res. 17, 1336–1343 (2014)

    Article  Google Scholar 

  6. De Sanctis, M.; Lovicu, G.; Buccioni, M.; Donato, A.; Richetta, M.; Varone, A.: Study of 13CR-4NI-(MO)(F6NM) steel grade heat treatment for maximum hardness control in industrial heats. Metals (Basel) 7, 351 (2017)

    Article  Google Scholar 

  7. Alkan, G.; Chae, D.; Kim, S.-J.: Effect of δ ferrite on impact property of hot-rolled 12Cr–Ni steel. Mater. Sci. Eng. A 585, 39–46 (2013)

    Article  CAS  Google Scholar 

  8. Divya, M.; Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.: Improving 410NiMo weld metal toughness by PWHT. J. Mater. Process. Technol. 211, 2032–2038 (2011)

    Article  CAS  Google Scholar 

  9. Babaei, H.; Shafyei, A.; Amini, K.: The effect of heat treatment on mechanical properties and microstructure of the AISI 422 martensitic stainless steel. Mechanics 22, 576–580 (2016)

    Google Scholar 

  10. Zappa, S.; Svoboda, H.; Surian, E.: Effect of post-weld heat treatment on the mechanical properties of supermartensitic stainless steel deposit. J. Mater. Eng. Perform. 26, 514–521 (2017)

    Article  CAS  Google Scholar 

  11. Zappa, S.; Svoboda, H.G.; Ramini, M.; Surian, E.; De Vedia, L.: Improving supermartensitic stainless steel weld metal toughness. Weld. J. 91, 83s (2012)

    Google Scholar 

  12. Zou, D.; Liu, X.; Ying, H.A.N.; Zhang, W.; Jiao, L.I.; Kun, W.U.: Influence of heat treatment temperature on microstructure and property of 00Crl3Ni5Mo2 supermartensitic stainless steel. J. Iron Steel Res. Int. 21, 364–368 (2014)

    Article  CAS  Google Scholar 

  13. Song, Y.Y.; Ping, D.H.; Yin, F.X.; Li, X.Y.; Li, Y.Y.: Microstructural evolution and low temperature impact toughness of a Fe–13% Cr–4% Ni–Mo martensitic stainless steel. Mater. Sci. Eng. A. 527, 614–618 (2010)

    Article  Google Scholar 

  14. Wang, P.; Lu, S.P.; Xiao, N.M.; Li, D.Z.; Li, Y.Y.: Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater. Sci. Eng. A. 527, 3210–3216 (2010)

    Article  Google Scholar 

  15. Schäfer, L.: Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel. J. Nucl. Mater. 258, 1336–1339 (1998)

    Article  ADS  Google Scholar 

  16. Bilmes, P.D.; Llorente, C.L.; Méndez, C.M.; Gervasi, C.A.: Microstructure, heat treatment and pitting corrosion of 13CrNiMo plate and weld metals. Corros. Sci. 51, 876–881 (2009)

    Article  CAS  Google Scholar 

  17. Lei, X.; Feng, Y.; Zhang, J.; Fu, A.; Yin, C.; Macdonald, D.D.: Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel. Electrochim. Acta. 191, 640–650 (2016)

    Article  CAS  Google Scholar 

  18. Bakhshayesh, M.M.; Farzadi, A.; Doustahadi, A.; Nouripour, M.: Measurement of degree of sensitization in post-weld heat treated 13Cr-4Ni martensitic stainless steel clad using double loop electrochemical potentiokinetic technique. Eng. Fail. Anal. 134, 106046 (2022)

    Article  Google Scholar 

  19. Zhao, Y.; Liu, W.; Fan, Y.; Zhang, T.; Dong, B.; Chen, L.; Wang, Y.: Influence of microstructure on the corrosion behavior of super 13Cr martensitic stainless steel under heat treatment. Mater. Charact. 175, 111066 (2021)

    Article  CAS  Google Scholar 

  20. Nowacki, J.; Rybicki, P.: The influence of welding heat input on submerged arc welded duplex steel joints imperfections. J. Mater. Process. Technol. 164, 1082–1088 (2005)

    Article  Google Scholar 

  21. Tabatabae, B.A.; Ashrafizadeh, F.; Hassanli, A.M.: Influence of retained austenite on the mechanical properties of low carbon martensitic stainless steel castings. ISIJ Int. 51, 471–475 (2011)

    Article  CAS  Google Scholar 

  22. Foroozmehr, F.: Ductile fracture of 13% CR-4% NI martensitic stainless steels used in hydraulic turbine welded runners. Ecole Polytechnique, Montreal (Canada) (2017)

  23. Kotecki, D.J.: A martensite boundary on the WRC-1992 diagram—part 2: the effect of manganese. Weld. J. 79, 346–354 (2000)

    Google Scholar 

  24. Mabruri, E.; Syahlan, Z.A.; Prifiharni, S.; Anwar, M.S.; Chandra, S.A.; Romijarso, T.B.; Adjiantoro, B.: Influence of austenitizing heat treatment on the properties of the tempered type 410-1Mo stainless steel. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 12085 (2017)

  25. Godin, S.; Boudreault, E.; Lévesque, J.-B.; Hazel, B.: On-site post-weld heat treatment of welds made of 410NiMo Steel. In: Proceedings of MS&T-COM (2013)

  26. Calliari, I.; Zanesco, M.; Dabala, M.; Brunelli, K.; Ramous, E.: Investigation of microstructure and properties of a Ni–Mo martensitic stainless steel. Mater. Des. 29, 246–250 (2008)

    Article  CAS  Google Scholar 

  27. Scheuer, C.J.; Fraga, R.A.; Cardoso, R.P.; Brunatto, S.F.: Effects of Heat Treatment Conditions on Microstructure and Mechanical Properties of AISI 420 Steel (2014)

  28. Shahin, N.; Shamanian, M.; Kharaziha, M.: Electrochemical behavior of the double-layer diamond-like carbon/plasma electrolytic oxidation on AZ31 alloy: a comparison of different PEO interlayers. Diam. Relat. Mater. 130, 109405 (2022)

    Article  CAS  ADS  Google Scholar 

  29. Beliardouh, N.E.; Tlili, S.; Oulabbas, A.; Ramoul, C.E.; Meddah, S.; Kaleli, H.: Investigation on dry sliding wear performance and corrosion resistance of 13Cr5Ni2Mo supermartensitic stainless steel. Tribol. Ind. 43, 107–116 (2021)

    Article  Google Scholar 

  30. Rajabi, T.; Atapour, M.; Elmkhah, H.; Nahvi, S.M.: Nanometric CrN/CrAlN and CrN/ZrN multilayer physical vapor deposited coatings on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells. Thin Solid Films 753, 139288 (2022)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Isfahan University of Technology and Mirco Company for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eslami.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdian, K., Eslami, A., Ashrafizadeh, F. et al. Effect of Heat Treatment on Microstructure, Mechanical Properties, and Corrosion Performance of 410NiMo Super Martensitic Stainless Steel Cladded on 21CrMoV5-11 by Submerged Arc Welding Process. Arab J Sci Eng 49, 1433–1446 (2024). https://doi.org/10.1007/s13369-023-07856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07856-z

Keywords

Navigation