Skip to main content
Log in

Fully Printable Eco-Friendly Chipless RFID Sensor

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The proposed research discusses an innovative, fully passive, data-dense, and compact 15 × 15 mm2 chipless radiofrequency identification tag. This tag possesses a 15-bit data, hence yielding 215 unique ID combinations. Due to data-dense structure the tag has bit density of 6.67 bits/cm2. The proposed tag is optimized and analyzed for different flexible laminates that includes Rogers (RT/duroid®/5880), Kapton®HN, PET, and HP-photopaper. The printability of tag is achieved by using silver nanoparticle-based conductive tracks. The conductivity of silver ink is 9 × 10S/m. The fully printable tag structure optimized with HP-photopaper substrate and silver nanoparticle-based ink hits the concept of green electronic because of organic nature of paper substrate. As paper has tendency to absorb moisture, therefore, with increasing humidity the tag behaves as humidity sensor. Due to the attractive features of the tag such as robustness, flexibility, simple printing, and need of budget friendly extensible substrates it can be located over rough places to execute sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17, 2347–2376 (2015). https://doi.org/10.1109/COMST.2015.2444095

    Article  Google Scholar 

  2. Valente, F. J.; Neto, A. C.: Intelligent steel inventory tracking with IoT / RFID. 2017 IEEE Int. Conf. RFID Technol. Appl. (RFID-TA). (2017) https://doi.org/10.1109/RFID-ta.2017.8098639.

  3. Shancang, Li.; Li Da Xu., Shanshan, Zhao.” “The Internet of Things: A Survey”, University of Bristol, Old Dominion University, Norfolk, VA 23529, USA, the University of the West of Scotland, Published Online, Springer Science Business Media New York, 26 April 2014.

  4. Ozguven, E.E.; Ozbay, K.: An RFID-based inventory management framework for emergency relief operations. Transp. Res. Part C: Emerg. Technol. 57, 166–187 (2015)

    Article  Google Scholar 

  5. Branagh, P.; Sheth A.: "Internet of Things: the story so far", IEEE IoT Newsletter, September 2014

  6. Ahmed, Rafeeq; Asim, Mohammad; Khan, Safwan.Zubair; Singh, Bharat;(2019). Green IOT- Issues and Challenges.Conference Paper.

  7. Rahman, S.: Green power: What is it and where can we end it? IEEE Power Energy Mag. 1(1), 3037 (2003)

    Article  Google Scholar 

  8. Aono, K.; Lajnef, N.; Faridazar, F.; Chakrabartty, S.: Infrastructural health monitoring using self-powered internet-of-things. IEEE Int Symp Circuits Syst(ISCAS) Montreal, QC 2016, 2058–2061 (2016). https://doi.org/10.1109/ISCAS.2016.7538983

    Article  Google Scholar 

  9. Shah, Krishna; Narmavala, Zunnun (2018). [IEEE 2018 Fourteenth International Conference on Information Processing (CIPRO) - Bangalore, India (2018.12.21–2018.12.23)] 2018 Fourteenth International Conference on Information Processing (CIPRO)-A Survey on Green Internet of Things., (), 1–4. https://doi.org/10.1109/ICINPRO43533.2018.9096789.

  10. Lin, Y.-H., et al.: Optimal and maximized configurable power saving protocols for corona-based wireless sensor networks. IEEE Trans. Mob. Comput. 14(12), 2544–2559 (2015). https://doi.org/10.1109/TMC.2015.2404796

    Article  Google Scholar 

  11. Chang, Chih-Hua.; Ronald, Y. Chang.; Hung-Yun, Hsieh.: "High-fidelity energy-efficient machine-to-machine communication." Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014 IEEE 25th Annual International Symposium on. IEEE, 2014. https://doi.org/10.1109/PIMRC.2014.7136139.

  12. Shuja, J., et al.: Survey of techniques and architectures for designing energy-efficient data centers. IEEE Syst. J. 10(2), 507–519 (2016). https://doi.org/10.1109/JSYST.2014.2315823

    Article  Google Scholar 

  13. Farahnakian, F., et al.: Using ant colony system to consolidate VMs for green cloud computing. IEEE Trans. Serv. Comput. 8(2), 187–198 (2015). https://doi.org/10.1109/TSC.2014.2382555

    Article  Google Scholar 

  14. Namboodiri, V.; Gao, L.: Energy-aware tag anticollision protocols for RFID systems. IEEE Trans. Mob. Comput. 9(1), 44–59 (2010). https://doi.org/10.1109/TMC.2009.96

    Article  Google Scholar 

  15. Jia, X.; Feng, Q.; Fan, T.; Lei, Q.: "RFID technology and its applications in the Internet of Things (IoT)," 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, 2012, pp. 1282–1285.

  16. Zou, Z. et al.: "Design and demonstration of passive UWB RFIDs: Chipless versus chip solutions," 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Nice,2012, pp.611.https://doi.org/10.1109/RFIDTA.2012.6404570.

  17. Javed, N.; Habib, A.; Amin, Y., et al.: Directly printable moisture sensor tag for intelligent packaging. IEEE Sens. J. 16(16), 61476148 (2016). https://doi.org/10.1109/JSEN.2016.2582847

    Article  Google Scholar 

  18. Attaran, A.; Rashidzadeh, R.: Chipless radio frequency identification tag for IoT applications. IEEE Int. Things J. vol.PP, no.99, pp.1–1., in press.

  19. Khan, M. M.; Tahir, F.A.; Farooqui, M. F.; Shamim, A.; Cheema, H. M.: IEEE Antennas Wire. Propag. Lett., PP [99] (2015) 1.

  20. Huang, H.; Su, L.: A compact dual-polarized chipless RFID tag by using nested concentric square loops. IEEE Antenn. Wirel. Pr. 16, 10361039 (2017). https://doi.org/10.1109/LAWP.2016.2618928

    Article  Google Scholar 

  21. Habib, A.; Azam, M. A.; Amin, Y.; Tenhunen, H.: Chipless slot resonators for IoT system identification. 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, 2016, pp.03410344.https://doi.org/10.1109/EIT.2016.7535262

  22. Athauda, T.; Karmakar, N.: "Optimization of novel chipless RFID tag designs using different fabrication techniques in ultra- wideband", 12th Int. Conf. on Signal Processing and Communication Systems (ICSPCS), Cairns, Australia, pp. 1–5, 2018.

  23. Vena, A.; Perret, E.; Tedjini, S.: A fully printable chipless RFID tag with detuning correction technique. IEEE Microw. Wirel. Compon. Lett. 22(4), 209–211 (2012). https://doi.org/10.1109/LMWC.2012.2188785

    Article  Google Scholar 

  24. Javed, Nimra; Habib, Ayesha; Amin, Yasar; Tenhunen, Hannu (2017). IEEE 2017 International Conference on Frontiers of Information Technology (FIT) - Islamabad, Pakistan (2017.12.18- 2017.12.20)] 2017-Towards moisture sensing using dual-Polarized Printable Chipless RFID Tag.,(),189–193. https://doi.org/10.1109/FIT.2017.00041.

  25. Grosinger, J.; Görtschacher, L.; Bösch, W.: "Sensor add-on for batteryless UHF RFID tags enabling a low-cost IoT infrastructure," 2016 IEEE MTT-S International Microwave Symposium (IMS), SanFrancisco, CA, 2016, pp.14.https://doi.org/10.1109/MWSYM.2016.7540331.

  26. Gupta, S.; Nikfal, B.; Caloz, C.: Chipless RFID System based on group delay engineered dispersive delay structures. IEEE Antennas Wirel. Propag. Lett. 10, 13661368 (2011). https://doi.org/10.1109/lawp.2011.2178058

    Article  Google Scholar 

  27. Kim, J.; Wang, Z.; Kim, W.S.: Stretchable RFID for wireless strain sensing with silver nano ink. IEEE Sens. J.l 14(12), 43954401 (2014). https://doi.org/10.1109/JSEN.2014.2335743

    Article  Google Scholar 

  28. Khan, M. M.; Tahir, F. A.; Cheema, H. M.: High capacity polarization sensitive chipless RFID tag. 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, 2015, pp. 1770-1771. https://doi.org/10.1109/APS.2015.7305274

  29. Sumi, M.; Dinesh, R.; Mohanan, C. M. N. P.; Mridula, S.: "Frequency signature based chipless RFID tag using shorted stub resonators," 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP),Kuta, 2015, pp.296–299. https://doi.org/10.1109/APCAP.2015.7374379.

  30. Rodrigues, R.A.A.; Gurjao, E.C.; de Assis, F.M.; Palazzi, V.; Alimenti, F.; Roselli, L.; Mezzanotte, P.; Tendjini, S.: ’’Design of planar resonators on a flexible substrate for chipless tags intended for crack sensing’’, IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, pp. 1–4,2015.

  31. Bibi, T.; Khan, A.T.; Amin, Y.; Ahmad, S.: RFID in IoT Miniaturized pentagonal slot-based data dense chipless RFID tag for IoT applications. Arabian J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-06228-9

    Article  Google Scholar 

  32. Javed, N.; Awais Azam, M.; Qazi, I.; Amin, Y.; Tenhunen, H.: A novel multi-parameter chipless RFID sensor for green networks. Int. J. Elect. Commun. (2020).

  33. Javed, N.; Azam, M.A.; Amin, Y.: Chipless RFID multi-sensor for temperature sensing and crack monitoring in an IoT environment. IEEE Sens. Lett. (2021). https://doi.org/10.1109/LSENS.2021.308321

    Article  Google Scholar 

  34. Babaeian, F.; Karmakar, N. C.: A semi-omnidirectional resonator for chipless RFID Backscattered Tag Design. 2020 27th International Conference on Telecommunications (ICT). (2020)

  35. Marindra, A.M.J.; Tian, G.Y.: “Chipless RFID sensor tag for metal crack detection and characterization. IEEE Trans. Microw. Theory Technol. 66(5), 2452–2462 (2018). https://doi.org/10.1109/TMTT.2017.2786696

    Article  Google Scholar 

  36. Satti, J.A., et al.: “Miniaturized humidity and temperature sensing RFID enabled tags”, Int. J. RF Microw. Comput. Aided Eng. 28(1), 1–9 (2018)

    Google Scholar 

  37. Shahid, L., et al.: Chipless RFID tag for touch event sensing and localization. In IEEE Access. 8, 502513 (2020). https://doi.org/10.1109/ACCESS.2019.2961691

    Article  Google Scholar 

  38. Fan, S.; Chang, T.; Liu, X.; Fan, Y.; Tentzeris, M. M.: "A Depolarizing Chipless RFID Tag with Humidity Sensing Capability," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018, pp.24692470.https://doi.org/10.1109/APUSNCURSINRSM.2018.8609386.

  39. Khadka, G.; Bibile, M.A.; Arjomandi, L.M.; Karmakar, N.C.: Analysis of artifacts on chipless RFID backscatter tag signals for real world implementation. IEEE Access 7, 66821–66831 (2019). https://doi.org/10.1109/ACCESS.2019.2917757

    Article  Google Scholar 

  40. Shahid, H.; Riaz, M.A.; Akram, A.; Amin, Y.; Loo, J., et al.: Novel QR-incorporated chipless RFID tag. IEIC Electron Exp. 16, 20180843–20180843 (2019)

    Article  Google Scholar 

  41. Khalid, M.T.; Habib, A.; Nadeem, M.; Umair, M.Y.; Javed, N.: ‘Printed humidity sensor for low-cost item tagging. Int. J. Electron. Commun. (2022). https://doi.org/10.1016/j.aeue.2022.154441

    Article  Google Scholar 

  42. Zeb, S.; Habib, A.; Amin, Y.; Tenhunen, H.; Loo, J.: ‘‘Green Electronic based Chipless Humidity Sensor For IoT Applications,’’ 2018 IEEE Green Technologies Conference. https://doi.org/10.1109/greentech.2018.00039.

  43. Khan, A.T.; Abdullah, Y.; Farhat, S.; Nawaz, W.; Rauf, U.: Design and analysis of a truncated elliptical-shaped chipless RFID tag. In Turkish J. Elect. Eng. Comput. Sci. (2020). https://doi.org/10.3906/elk-2008-68

    Article  Google Scholar 

  44. Javed, N.; Azam, M.A.; Qazi, I., et al.: Data-dense chipless RFID multisensor for aviculture industry. IEEE Microw. Wirel. Compon. Lett. 30(12), 1193–1196 (2020). https://doi.org/10.1109/LMWC.2020.3032027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Habib.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, W., Habib, A., Umair, M.Y. et al. Fully Printable Eco-Friendly Chipless RFID Sensor. Arab J Sci Eng 48, 14697–14706 (2023). https://doi.org/10.1007/s13369-023-07848-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07848-z

Keywords

Navigation