Skip to main content
Log in

Assessment of Reinforced Concrete Beam with Electro-Mechanical Impedance Technique Based on Piezoelectric Transducers

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electromechanical impedance technique (EMI) based on piezoelectric (PZT) transducers is a local method to detect damage. The sensing range of a PZT patch in the identification of damage has not been sufficiently investigated. To overcome this gap, the paper presents a new approach where a sensitivity analysis is carried out based on the variance decomposition (VD) method to comprehensively investigate the sensing range of a PZT patch. The research is to determine the patch’s sensing region to identify concrete damage. In this study, three PZTs were surface bonded to a reinforced concrete (RC) beam of grade M35 at certain intervals. The electromechanical responses of each PZT monitoring the cracks on the beam were measured. Using the root mean square deviation (RMSD) of the responses and the horizontal distance of each crack from three PZT patches, a VD model was formed in RStudio software to determine the contribution of each PZT in the detection of cracks. Nine RC beam specimens in total were tested experimentally, and the results were uniform. The VD factors showed higher values when the cracks were near the PZT and vice-versa. The average sensing range of the PZT patch in concrete was found to vary between 0.200 and 0.300 m. The sensitivity of the PZT to detect the crack reduces as the crack lies beyond the sensing range of the patch. It can be concluded that the proposed sensitivity analysis based on the VD method is quite effective in determining the sensing range of PZT patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aktan, A.E.; Catbas, F.N.; Grimmelsman, K.A.; Pervizpour, M.; Curtis, J.M.; Shen, K.; Qin, X.: Health monitoring for effective management of infrastructure. Smart Struct. Mater. (2002). https://doi.org/10.1117/12.472575

    Article  Google Scholar 

  2. Yan, W.; Chen, W.: Structural health monitoring using high-frequency electromechanical impedance signatures. Adv. Civ. Eng. (2010). https://doi.org/10.1155/2010/429148

    Article  Google Scholar 

  3. Farrar, C.; Worden, K.: An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2006). https://doi.org/10.1098/rsta.2006.1928

    Article  Google Scholar 

  4. Güemes, A.; Fernandez-Lopez, A.; Pozo, A.; Sierra-Pérez, J.: Structural health monitoring for advanced composite structures: a review. J. Compos. Sci. (2020). https://doi.org/10.3390/jcs4010013

    Article  Google Scholar 

  5. Lim, Y.Y.; Soh, C.: Electro-mechanical impedance (EMI) - based incipient crack monitoring and critical crack identification of beam structures. Res. Nondestruct. Eval. (2014). https://doi.org/10.1080/09349847.2013.848311

    Article  Google Scholar 

  6. Narayanan, A.; Subramaniam, K.V.: Experimental evaluation of load-induced damage in concrete from distributed microcracks to localized cracking on electro-mechanical impedance response of bonded PZT. Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.148

    Article  Google Scholar 

  7. Talakokula, V.; Bhalla, S.; Gupta, A.: Corrosion assessment of reinforced concrete structures based on equivalent structural parameters using electro-mechanical impedance technique. J. Intell. Mater. Syst. Struct. (2013). https://doi.org/10.1177/1045389x13498317

    Article  Google Scholar 

  8. Xu, Y.; Li, K.; Liu, L.; Yang, L.; Wang, X.; Huang, Y.: Experimental study on rebar corrosion using the galvanic sensor combined with the electronic resistance technique. Sensor (2016). https://doi.org/10.3390/s16091451

    Article  Google Scholar 

  9. Wang, D.; Song, H.; Zhu, H.: Embedded 3D electromechanical impedance model for strength monitoring of concrete using a PZT transducer. Smart Mater. Struct. (2014). https://doi.org/10.1088/0964-1726/23/11/115019

    Article  Google Scholar 

  10. Providakis, C.P.; Liarakos, E.V.; Kampianakis, E.: Nondestructive wireless monitoring of early-age concrete strength gain using an innovative electromechanical impedance sensing system. Smart Mater. Res. (2013). https://doi.org/10.1155/2013/932568

    Article  Google Scholar 

  11. Providakis, C.P.; Liarakos, E.V.: Web-based concrete strengthening monitoring using an innovative electromechanical impedance telemetric system and extreme values statistics. Struct. Control. Health Monit. (2014). https://doi.org/10.1002/stc.1645

    Article  Google Scholar 

  12. Liang, C.; Sun, F.; Rogers, C.: Coupled electro-mechanical analysis of adaptive material systems — determination of the actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct. (1994). https://doi.org/10.1177/1045389X9400500102

    Article  Google Scholar 

  13. Bhalla, S.; Soh, C.: Structural health monitoring by piezo-impedance transducers. I: Modeling. J. Aerosp. Eng. (2004). https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(154)

    Article  Google Scholar 

  14. Giurgiutiu, V.; Reynolds, A.; Rogers, C.: Experimental investigation of E/M impedance health monitoring for spot-welded structural joints. J. Intell. Mater. Syst. Struct. (1999). https://doi.org/10.1106/N0J5-6UJ2-WlGV-Q8MC

    Article  Google Scholar 

  15. Kaur, N.; Bhalla, S.; Maddu, S.: Damage and retrofitting monitoring in reinforced concrete structures along with long-term strength and fatigue monitoring using embedded lead zirconate titanate patches. J. Intell. Mater. Syst. Struct. (2018). https://doi.org/10.1177/1045389X18803458

    Article  Google Scholar 

  16. Bhalla, S.; Vittal, P.; Veljkovic, M.: Piezo-impedance transducers for residual fatigue life assessment of bolted steel joints. Struct. Health Monit. (2012). https://doi.org/10.1177/1475921712458708

    Article  Google Scholar 

  17. Providakis, C.P.; Stefanaki, K.D.; Voutetaki, M.E.; Tsompanakis, Y.; Stavroulaki, M.: Damage detection in concrete structures using a simultaneously activated multi-mode PZT active sensing system: numerical modelling. Struct. Infrastruct. Eng. (2013). https://doi.org/10.1080/15732479.2013.831908

    Article  Google Scholar 

  18. Kocherla, A.; Subramaniam, K.V.: Embedded smart PZT-based sensor for internal damage detection in concrete under applied compression. Measurement (2020). https://doi.org/10.1016/j.measurement.2020.108018

    Article  Google Scholar 

  19. Chalioris, C.E.; Papadopoulos, N.A.; Angeli, G.M.; Karayannis, C.G.; Liolios, A.A.; Providakis, C.P.: Damage evaluation in shear-critical reinforced concrete beam using piezoelectric transducers as smart aggregates. Open Eng. (2015). https://doi.org/10.1515/eng-2015-0046

    Article  Google Scholar 

  20. Wang, D.; Song, H.; Zhu, H.: Numerical and experimental studies on damage detection of a concrete beam based on PZT admittances and correlation coefficient. Constr. Build. Mater. (2013). https://doi.org/10.1016/j.conbuildmat.2013.08.074

    Article  Google Scholar 

  21. Bhalla, S.; Soh, C.: Structural impedance based damage diagnosis by piezo-transducers. Earthq. Eng. Struct. Dyn. (2003). https://doi.org/10.1002/eqe.307

    Article  Google Scholar 

  22. Karayannis, C.G.; Chalioris, C.E.; Angeli, G.M.; Papadopoulos, N.A.; Favvata, M.J.; Providakis, C.P.: Experimental damage evaluation of reinforced concrete steel bars using piezoelectric sensors. Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.019

    Article  Google Scholar 

  23. Providakis, C.P.; Angeli, G.M.; Favvata, M.J.; Papadopoulos, N.A.; Chalioris, C.E.; Karayannis, C.G.: Detection of concrete reinforcement damage using piezoelectric materials-analytical and experimental study. Int. J. Civ. Environ. Eng. 8(2), 197–205 (2014)

    Google Scholar 

  24. Hu, X.; Zhu, H.; Wang, D.: A study of concrete slab damage detection based on the electromechanical impedance method. Sensors (2014). https://doi.org/10.3390/s141019897

    Article  Google Scholar 

  25. Chalioris, C.E.; Providakis, C.P.; Favvata, M.J.; Papadopoulos, N.A.; Angeli, G.M.; Karayannis, C.G.: Experimental application of a wireless earthquake damage monitoring system (WiAMS) using PZT transducers in reinforced concrete beams. WIT Trans. Built Environ. (2015). https://doi.org/10.2495/eres150191

    Article  Google Scholar 

  26. Chalioris, C.E.; Papadopoulos, N.A.; Angeli, G.M.; Karayannis, C.G.; Liolios, A.A.; Providakis, C.P.: Damage evaluation in shear-critical reinforcedconcrete beam using piezoelectric transducers as smart aggregates. Open Eng. (2015). https://doi.org/10.1515/eng-2015-0046

    Article  Google Scholar 

  27. Ai, D.; Zhu, H.; Luo, H.; Wang, C.: Mechanical impedance based embedded piezoelectric transducer for reinforced concrete structural impact damage detection: a comparative study. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.039

    Article  Google Scholar 

  28. Kalyanasundaram, B.; Saravanan, T.J.; B. Priya C, N. Gopalakrishnan,: Piezoelectric sensor–based damage progression in concrete through serial/parallel multi-sensing technique. Struct. Health Monit. (2019). https://doi.org/10.1177/1475921719845153

    Article  Google Scholar 

  29. Moharana, S.; Bhalla, S.: A continuum-based modelling approach for adhesively bonded piezo-transducers for EMI technique. Int. J. Solids Struct. (2014). https://doi.org/10.1016/j.ijsolstr.2013.12.022

    Article  Google Scholar 

  30. Shanker, R.; Bhalla, S.; Gupta, A.: Integration of electro-mechanical impedance and global dynamic techniques for improved structural health monitoring. J. Intell. Mater. Syst. Struct. 21(3), 285–295 (2010)

    Article  Google Scholar 

  31. Talakokula, V.; Bhalla, S.; Ball, R.; Bowen, C.; Pesce, G.; Kurchania, R.; Bhattacharjee, B.; Gupta, A.; Paine, K.: Diagnosis of carbonation induced corrosion initiation and progression in reinforced concrete structures using piezo impedance transducers. Sens. Actuators, A Phys. (2016). https://doi.org/10.1016/j.sna.2016.02.033

    Article  Google Scholar 

  32. Tawie, R.; Lee, H.: Monitoring the strength development in concrete by EMI sensing technique. Constr. Build. Mater. (2010). https://doi.org/10.1016/j.conbuildmat.2010.02.014

    Article  Google Scholar 

  33. Providakis, C.P.; Liarakos, E.V.: An early-age concrete strength development monitoring and miniaturized wireless impedance sensing system. Eng. Procedia (2011). https://doi.org/10.1016/j.proeng.2011.04.082

    Article  Google Scholar 

  34. Na, W.S.; Baek, J.: A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. Sensors (2018). https://doi.org/10.3390/s18051307

    Article  Google Scholar 

  35. Zuo, C.; Feng, X.; Zhang, Y.; Lu, L.; Zhou, J.: Crack detection in pipelines using multiple electromechanical impedance sensors. Smart Mater. Struct. (2017). https://doi.org/10.1088/1361-665X/aa7ef3

    Article  Google Scholar 

  36. Liu, P.; Wang, W.; Chen, Y.; Feng, X.; Miao, L.: Concrete damage diagnosis using electromechanical impedance technique. Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.173

    Article  Google Scholar 

  37. Soh, C.K.; Lim, Y.Y.: Fatigue damage diagnosis and prognosis using electromechanical impedance technique. Struct. Health Monit. Aerosp. Struct. (2016). https://doi.org/10.1016/B978-0-08-100148-6.00015-9

    Article  Google Scholar 

  38. Hassan Hire, J.; Hosseini, S.; Moradi, F.: Optimum PZT patch size for corrosion detection in reinforced concrete using the electromechanical impedance technique. Sensors (2021). https://doi.org/10.3390/s21113903

    Article  Google Scholar 

  39. Ai, D.; Luo, H.; Wang, C.; Zhu, H.: Monitoring of the load-induced RC beam structural tension/compression stress and damage using piezoelectric transducers. Eng. Struct. (2018). https://doi.org/10.1016/j.engstruct.2017.10.046

    Article  Google Scholar 

  40. Saravanan, T.J.: Elastic wave methods for non-destructive damage diagnosis in the axisymmetric viscoelastic cylindrical waveguide. Measurement (2021). https://doi.org/10.1016/j.measurement.2021.109253

    Article  Google Scholar 

  41. Gayakwad, H.; Thiyagarajan, J.: Structural damage detection through EMI and wave propagation techniques using embedded PZT smart sensing units. Sensors (2022). https://doi.org/10.3390/s22062296

    Article  Google Scholar 

  42. Zhu, X.; Gao, X.; Zhang, C.: Investigation of the sensitivity of piezoelectric transducers for structural health monitoring of reinforced concrete structures. Smart Mater. Struct. 19(1), 29 (2018)

    Google Scholar 

  43. Yang, Y.; Hu, Y.; Lu, Y.: Sensitivity of PZT impedance sensors for damage detection of concrete structures. Sensors (2008). https://doi.org/10.3390/s8010327

    Article  Google Scholar 

  44. Huynh, T.C.; Lee, S.Y.; Dang, N.L.; Kim, J.T.: Sensing region characteristics of smart piezoelectric interface for damage monitoring in plate-like structures. Sensors (2019). https://doi.org/10.3390/s19061377

    Article  Google Scholar 

  45. Soh, C.K.; Yang, Y.; Bhalla, S.: Smart Materials in Structural Health Monitoring. Control and Biomechanics, Springer (2013)

    Google Scholar 

  46. Soh, C.K.; Tseng, K.K.-H.; Bhalla, S.; Gupta, A.: Performance of smart piezoceramic transducers in health monitoring of RC bridge. Smart Mater. Struct. (2000). https://doi.org/10.1088/0964-1726/9/4/317

    Article  Google Scholar 

  47. Annamdas, V.G.M.; Radhika, M.A.: Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: a review of wired, wireless and energy-harvesting methods. J. Intell. Mater. Syst. Struct. (2013). https://doi.org/10.1177/1045389X13481254

    Article  Google Scholar 

  48. Park, G.; Cudney, H.H.; Inman, D.J.: Impedance-based health monitoring of civil structural components. J. Infrastruct. Syst. (2000). https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)

    Article  Google Scholar 

  49. Lim, Y.Y.; Smith, S.T.; Padilla, R.V.; Soh, C.K.: Monitoring of concrete curing using the electromechanical impedance technique: review and path forward. Struct. Health Monit. (2021). https://doi.org/10.1177/1475921719893069

    Article  Google Scholar 

  50. Giurgiutiu, V.: Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Academic Press, Elsevier (2014)

    Google Scholar 

  51. Bhalla, S.; Soh, C.K.: Electromechanical impedance modelling for adhesively bonded piezo-transducers. J. Intell. Mater. Syst. Struct. (2004). https://doi.org/10.1177/1045389X04046309

    Article  Google Scholar 

  52. Giurgiutiu, V.; Rogers, C.A.: Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE. Smart Struct. Mater. (1998). https://doi.org/10.1117/12.316923

    Article  Google Scholar 

  53. Alexanderian, A.; Gremaud, P.A.; Smith, R.C.: Variance-based sensitivity analysis for time-dependent processes. Reliab. Eng. Syst. Saf. (2020). https://doi.org/10.1016/j.ress.2019.106722

    Article  Google Scholar 

  54. Puy, A.; Piano, S.L.; Saltelli, A.; Levin, S.A.: Sensobol: an R package to compute variance-based sensitivity indices. J. Stat. Softw. (2022). https://doi.org/10.18637/jss.v102.i05

    Article  Google Scholar 

  55. Prieur, C.; Tarantola, S.: Variance-based sensitivity analysis: theory and estimation algorithms. Handb. Uncertain. Quantif. (2017). https://doi.org/10.1007/978-3-319-12385-1_35

    Article  Google Scholar 

  56. Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. (2010). https://doi.org/10.1016/j.cpc.2009.09.018

    Article  MathSciNet  MATH  Google Scholar 

  57. IS 456: Indian standard code of practice for general structural use of plain and reinforced concrete (2021).

  58. IS 1786: Indian standard code of high strength deformed steel bars and wires for concrete reinforcement—specification (2008).

  59. Manual for the design of reinforced concrete building structures (Second edition) - The institution of structural engineers: Manual for the design of reinforced concrete building structures (Second Edition) - the Institution of Structural Engineers (2019). https://www.istructe.org/resources/manuals/design-reinforced-concrete-building-structures/

  60. Ceramics, P.I.: Product Information Catalogue. Lindenstrabe, Germany (2012)

    Google Scholar 

  61. Technologies, A.: Test and Measurement Catalogue. Springer, USA (2012)

    Google Scholar 

  62. Schwankl, M.; Sharif Khodaei, Z.; Aliabadi, M.H.; Weimer, C.: Electro-mechanical impedance technique for structural health monitoring of composite panels. Key Engineering Materialsarch (2012). https://doi.org/10.4028/www.scientific.net/KEM.525-526.569

    Article  Google Scholar 

  63. Heico: Hydraulic & Engineering Instruments Catalogue, India (2015).

  64. Park, G.; Cudney, H.; Inman, D.: An integrated health monitoring technique using structural impedance sensors. J. Intell. Mater. Syst. Struct. (2000). https://doi.org/10.1177/104538900772664611

    Article  Google Scholar 

  65. Zhang, C.; Chu, J.; Fu, G.: Sobol′’s sensitivity analysis for a distributed hydrological model of Yichun River Basin, China. J. Hydrol. (2013). https://doi.org/10.1016/j.jhydrol.2012.12.005

    Article  Google Scholar 

  66. Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T.: Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ. Model. Softw. (2016). https://doi.org/10.1016/j.envsoft.2016.02.008

    Article  Google Scholar 

  67. Zhang, K.; Lu, Z.; Wu, D.; Zhang, Y.: Analytical variance based global sensitivity analysis for models with correlated variables. Appl. Mathemat. Model. (2017). https://doi.org/10.1016/j.apm.2016.12.036

    Article  MathSciNet  MATH  Google Scholar 

  68. Sakar, M.G.; Uludag, F.; Erdogan, F.: Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method. Appl. Math. Model. (2016). https://doi.org/10.1016/j.apm.2016.02.005

    Article  MathSciNet  MATH  Google Scholar 

  69. Athanasopoulos, G.; Vahid, F.: VARMA versus VAR for macroeconomic forecasting. J. Bus. Econ. Stat. 26, 237–252 (2012). https://doi.org/10.1198/073500107000000313

    Article  MathSciNet  Google Scholar 

  70. Rehal, V. (2022). Impulse response functions after VAR and VECM. SPUR ECONOMICS - learn and excel. https://spureconomics.com/impulse-response-functions-after-var-and-vecm/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harkirat Kaur.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Singla, S. Assessment of Reinforced Concrete Beam with Electro-Mechanical Impedance Technique Based on Piezoelectric Transducers. Arab J Sci Eng 48, 13449–13463 (2023). https://doi.org/10.1007/s13369-023-07839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07839-0

Keywords

Navigation