Skip to main content
Log in

Cured NaOH-Etched Heated Clay-Cellulose Composites: Characterization, Dye Adsorption, and Desorption Study Using Response Surface Methodology

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Water contamination by dyeing chemicals has become a worldwide problem. Adsorption by using low-cost adsorbents has been considered as an appropriate and economical method for water remediation. So, the process of the dye adsorption by cured alkali-activated heated clay-cellulose (up to 10 mass%) composites was investigated within the 288–318 K range using methylene blue (MB) as a dye-adsorbate model. For this purpose, X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscope were used. Moreover, the effects of adsorbent dosage, solution pH, contact time and temperature were assessed. Additionally, the dye release in different experimental conditions was studied by using the response surface methodology. It was shown that the composites were the object of formation of zeolites and geopolymers. The use of low adsorbent dosage (0.5 mg/L) and pH > 7 improved MB adsorption. The adsorption occurred spontaneously (ΔG° < – 35 kJ/mol) and endothermically (0 < ΔH° < 12 kJ/mol). The desorption efficiency of the cellulose-rich adsorbent increased with the increase of pH or T, and with the decrease of the ionic strength. It did not exceed 50% in the optimal experimental conditions. The MB retention took place mainly by pores filling, and its rate was controlled by diffusion. MB was adsorbed as monomer, dimer and H-aggregates. Siloxane groups together with hydroxyls were the main active adsorption sites. The adsorption capacity (about 31 mg/g) was higher than those reported for some low-cost adsorbents. The adsorption cost was in the range of 0.19–0.20 US$/g of MB removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; Shah, T.; Khan, I.: Review on methylene blue: its properties, uses, toxicity and photodegradation. Water 14(2), 242 (2022)

    Article  Google Scholar 

  2. Hang, P.T.; Brindley, G.W.: Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays Clay Miner. 18, 203–212 (1970)

    Article  Google Scholar 

  3. Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D.: Review on recent advances of carbon based adsorbent for methylene blue removal from wastewater. Mater. Today Chem. 16, 100233 (2020)

    Article  Google Scholar 

  4. Ighalo, J.O.; Iwuozor, K.O.; Igwegbe, C.A.; Adeniyi, A.G.: Verification of pore size effect on aqueous-phase adsorption kinetics: a case study of methylene blue. Colloids and Surfaces : Physicochem. Eng. Aspects 626, 127119 (2021)

    Article  Google Scholar 

  5. Alsukaibi, A.K.: Various approaches for the detoxification of toxic dyes in wastewater. Processes 10(10), 1968 (2022)

    Article  Google Scholar 

  6. Hamad, H.N.; Idrus, S.: Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: a review. Polymers 14, 783 (2022)

    Article  Google Scholar 

  7. Mashkoor, F.; Nasar, A.: Magsorbents: potential candidates in wastewater treatment technology–A review on the removal of methylene blue dye. J. Magnet. Magnetic. Mater. 500, 166408 (2020)

    Article  Google Scholar 

  8. Iwuozor, K.O.; Ighalo, J.O.; Ogunfowora, L.A.; Adeniyi, A.G.; Igwegbe, C.A.: An empirical literature analysis of adsorbent performance for methylene blue uptake from aqueous media. J. Environ. Chem. Eng. 9, 105658 (2021)

    Article  Google Scholar 

  9. Vishnu, D.; Dhandapani, B.; Authilingam, S.; Sivakumar, S.V.: A comprehensive review of effective adsorbents used for the removal of dyes from wastewater. Curr. Anal. Chem. 18(3), 255–268 (2022)

    Article  Google Scholar 

  10. Cemin, A.; Ferrarini, F.; Poletto, M.; Bonetto, L.R.; Bortoluz, J.; Lemée, L.; Guégan, R.; Esteves, V.I.; Giovanela, M.: Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye. Int. J. Biol. Macromol. 170, 375–389 (2021)

    Article  Google Scholar 

  11. Beims, R.F.; Arredondo, R.; Carrero, D.J.S.; Yuan, Z.; Li, H.; Shui, H.; Zhang, Y.; Leitch, M.; Xu, C.C.: Functionalized wood as bio-based advanced materials: properties, applications, and challenges. Renew. Sustain. Energy Rev. 157, 112074 (2022)

    Article  Google Scholar 

  12. Al-Aoh, H.A.; Mihaina, I.A.M.; Alsharif, M.A.; Darwish, A.A.A.; Rashad, M.; Mustafa, S.K.; Meshari, M.H.A.; Mohammed, A.A.; Al-Shehri, H.S.: Removal of methylene blue from synthetic wastewater by the selected metallic oxides nanoparticles adsorbent: equilibrium, kinetic and thermodynamic studies. Chem. Eng. Commun. 207(12), 1719–1735 (2020)

    Article  Google Scholar 

  13. García-Carvajal, C.; Villarroel-Rocha, J.; de Souza, V.C.; Sapag, K.: Development of ceramic honeycomb monolith from natural zeolite tested as adsorbent to remove methylene blue in aqueous media. Environ. Sci. Pollution Res. 29(53), 79890–79902 (2022)

    Article  Google Scholar 

  14. Malatji, N.; Makhado, E.; Modibane, K.D.; Ramohlola, K.E.; Maponya, T.C.; Monama, G.R.; Hato, M.J.: Removal of methylene blue from wastewater using hydrogel nanocomposites: a review. Nanomater. Nanotechnol. 11, 1–27 (2021)

    Article  Google Scholar 

  15. Dinh, V.P.; Le, H.M.; Nguyen, V.D.; Dao, V.A.; Hung, N.Q.; Tuyen, L.A.; Lee, S.; Yi, J.; Nguyen, T.D.; Tan, L.V.: Insight into the adsorption mechanisms of methylene blue and chromium (III) from aqueous solution onto pomelo fruit peel. RSC Adv. 9(44), 25847–25860 (2019)

    Article  Google Scholar 

  16. Mashkoor, F.; Nasar, A.: Magnetized Tectonagrandis sawdust as a novel adsorbent: preparation, characterization, and utilization for the removal of methylene blue from aqueous solution. Cellulose 27(5), 2613–2635 (2020)

    Article  Google Scholar 

  17. You, X.; Wang, R.; Zhu, Y.; Sui, W.; Cheng, D.: Comparison of adsorption properties of a cellulose-rich modified rice husk for the removal of methylene blue and aluminum (III) from their aqueous solution. Industr. Crops Products 170, 113687 (2021)

    Article  Google Scholar 

  18. Cong, P.; Cheng, Y.: Advances in geopolymer materials: a comprehensive review. J. Traffic Transp. Eng. (English Edition) 8(3), 283–314 (2021)

    Article  Google Scholar 

  19. Ahmed, H.U.; Mohammed, A.A.; Mohammed, A.S.: The role of nanomaterials in geopolymer concrete composites: a state-of-the-art review. J. Build Eng. 49, 104062 (2022)

    Article  Google Scholar 

  20. Zhang, X.; Bai, C.; Qiao, Y.; Wang, X.; Jia, D.; Li, H.; Colombo, P.: Porous geopolymer composites: a review. Compos. Part A: Appl. Sci. Manuf. 150, 106629 (2021)

    Article  Google Scholar 

  21. Ren, Z.; Wang, L.; Li, Y.; Zha, J.; Tian, G.; Wang, F.; Zhang, H.; Liang, J.: Synthesis of zeolites by in-situ conversion of geopolymers and their performance of heavy metal ion removal in wastewater: a review. J. Cleaner Prod. 349, 131441 (2022)

    Article  Google Scholar 

  22. Novais, R.M.; Carvalheiras, J.; Tobaldi, D.M.; Seabra, M.P.; Pullar, R.C.; Labrincha, J.A.: Synthesis of porous biomass fly ash-based geopolymer spheres for efficient removal of methylene blue from wastewaters. J. Cleaner Prod. 207, 350–362 (2019)

    Article  Google Scholar 

  23. Maleki, A.; Mohammad, M.; Emdadi, Z.; Asim, N.; Azizi, M.; Safaei, J.: Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions. Arabian J. Chem. 13(1), 3017–3025 (2020)

    Article  Google Scholar 

  24. Asim, N.; Badiei, M.; Shakeri, M.; Emdadi, Z.; Samsudin, N.A.; Soltani, S.; Mohammed, M.; Amin, N.: Development of green photocatalytic geopolymers for dye removal. Mater. Chem. Phys. 283, 126020 (2022)

    Article  Google Scholar 

  25. Medri, V.; Papa, E.; Mor, M.; Vaccari, A.; Muri, A.N.; Piotte, L.; Melandri, C.; Landi, E.: Mechanical strength and cationic dye adsorption ability of metakaolin-based geopolymer spheres. Appl. Clay Sci. 193, 105678 (2020)

    Article  Google Scholar 

  26. Jin, H.; Zhang, Y.; Wang, Q.; Chang, Q.; Li, C.: Rapid removal of methylene blue and nickel ions and adsorption/desorption mechanism based on geopolymer adsorbent. Colloid Interface Sci. Commun. 45, 100551 (2021)

    Article  Google Scholar 

  27. Kaya-Özkiper, K.; Uzun, A.; Soyer-Uzun, S.: A novel alkali activated magnesium silicate as an effective and mechanically strong adsorbent for methylene blue removal. J. Hazardous Mater. 424, 127256 (2022)

    Article  Google Scholar 

  28. Li, C.J.; Zhang, Y.J.; Chen, H.; He, P.Y.; Meng, Q.: Development of porous and reusable geopolymer adsorbents for dye wastewater treatment. J. Cleaner Prod. 348, 131278 (2022)

    Article  Google Scholar 

  29. Chen, Y.; Hanshe, M.; Sun, Z.; Zhou, Y.; Mei, C.; Duan, G.; Zheng, J.; Shiju, E.; Jiang, S.: Lightweight and anisotropic cellulose nanofibril/rectorite composite sponges for efficient dye adsorption and selective separation. Int. J. Biol. Macromol. 207, 130–139 (2022)

    Article  Google Scholar 

  30. Akter, M.; Bhattacharjee, M.; Dhar, A.K.; Rahman, F.B.A.; Haque, S.; Rashid, T.U.; Kabir, S.F.: Cellulose-based hydrogels for wastewater treatment: a concise review. Gels 7(1), 30 (2021)

    Article  Google Scholar 

  31. Wang, S.; Chen, W.; Zhang, C.; Pan, H.: Efficient and selective adsorption of cationic dyes with regenerated cellulose. Chem. Phys. Lett. 784, 139104 (2021)

    Article  Google Scholar 

  32. Malatji, N.; Makhado, E.; Modibane, K.D.; Ramohlola, K.E.; Maponya, T.C.; Monama, G.R.; Hato, M.J.: Removal of methylene blue from wastewater using hydrogel nanocomposites: a review. Nanomater. Nanotechnol. 11, 18479804211039424 (2021)

    Article  Google Scholar 

  33. Zougagh, M.; Rudner, P.C.; García de Torres, A.; Pavón, J.M.C.: Application of Doehlert matrix and factorial designs in the optimization of experimental variables associated with the on-line preconcentration and determination of zinc by flow injection inductively coupled plasma atomic emission spectrometry. J. Anal. Atomic Spectrom. 15, 1589–1594 (2000)

    Article  Google Scholar 

  34. Sokolar, R.; Nguyen, M.: Sintering of anorthite ceramic body based on interstratified illite-smectite clay. Ceram. Int. 48(21), 31783–31789 (2022)

    Article  Google Scholar 

  35. Rocky, B.P.; Thompson, A.J.: Characterization of the crystallographic properties of bamboo plants, natural and viscose fibers by X-ray diffraction method. J. Textile Instit. 112(8), 1295–1303 (2021)

    Article  Google Scholar 

  36. Ouajai, S.; Shanks, R.A.: Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym. Degradation Stability 89(2), 327–335 (2005)

    Article  Google Scholar 

  37. Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, A.B.; Ståhl, K.: On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6), 563–576 (2005)

    Article  Google Scholar 

  38. Budtova, T.; Navard, P.: Cellulose in NaOH–water based solvents: a review. Cellulose 23(1), 5–55 (2016)

    Article  Google Scholar 

  39. Viegas, R.; Campinas, M.; Costa, H.; Rosa, M.J.: How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes. Adsorption 20(5), 737–746 (2014)

    Article  Google Scholar 

  40. Zhou, X.; Zhou, X.: The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chem. Eng. Commun. 201(11), 1459–1467 (2014)

    Article  Google Scholar 

  41. Cerqueira, U.M.F.M.; Bezerra, M.A.; Ferreira, S.L.C.; de Jesus Araújo, R.; da Silva, B.N.; Novaes, C.G.: Doehlert design in the optimization of procedures aiming food analysis–a review. Food Chem. 364, 130429 (2021)

    Article  Google Scholar 

  42. Mathieu, D.; Phan Tan Luu.: Software NEMROD. Université d’Aix, Marseille III, France. (1980)

  43. Verdooren, L.R.: Use of Doehlert designs for second-order polynomial models. Math. Stat. 5(2), 62–67 (2017)

    Article  Google Scholar 

  44. Seltman, H.J.: Experimental design and analysis. Carnegie Mellon University (2012)

    Google Scholar 

  45. Khaleque, A.; Alam, M.M.; Hoque, M.; Mondal, S.; Haider, J.B.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Zhou, J.L.; Ahmed, M.B.; Moni, M.A.: Zeolite synthesis from low-cost materials and environmental applications: a review. Environ. Adv. 2, 100019 (2020)

    Article  Google Scholar 

  46. Haouache, S.; Jimenez-Saelices, C.; Cousin, F.; Falourd, X.; Pontoire, B.; Cahier, K.; Jérome, F.; Capron, I.: Cellulose nanocrystals from native and mercerized cotton. Cellulose 29(3), 1567–1581 (2022)

    Article  Google Scholar 

  47. Peter, Z.: Order in cellulosics: Historical review of crystal structure research on cellulose. Carbohydrate Polym. 254, 117417 (2021)

    Article  Google Scholar 

  48. Hajjaji, M.; Beraa, A.; Coppel, Y.; Laurent, R.; Caminade, A.-M.: Adsorption capacity of sodic- and dendrimers-modified stevensite. Clay Minerals 53, 525–544 (2018)

    Article  Google Scholar 

  49. Rytwo, G.; Ruiz-Hitzky, E.: Enthalpies of adsorption of methylene blue and crystal violet to montmorillonite. J. Therm. Anal. Calorim. 71, 751–759 (2003)

    Article  Google Scholar 

  50. Mills, A.; Hazafy, D.; Parkinson, J.; Tuttle, T.; Hutchings, M.G.: Effect of alkali on methylene blue (CI Basic Blue 9) and other thiazine dyes. Dyes Pigments 88(2), 149–155 (2011)

    Article  Google Scholar 

  51. El Alouani, M.; Alehyen, S.; El Achouri, M.; Taibi, M.: Preparation, characterization, and application of metakaolin-based geopolymer for removal of methylene blue from aqueous solution. J. Chem. 2019, 1–14 (2019)

    Article  Google Scholar 

  52. Vedder, W.: Correlations between infrared spectrum and chemical composition of mica. Am. Mineral.: J. Earth Planetary Mater. 49(5–6), 736–768 (1964)

    Google Scholar 

  53. Szostak, R.: Handbook of molecular sieves. Published by Van Nostrand Reinhold (1992)

    Google Scholar 

  54. El Hafid, K.; Hajjaji, M.: Effects of the experimental factors on the microstructure and the properties of cured alkali-activated heated clay. Appl. Clay Sci. 116, 202–210 (2015)

    Article  Google Scholar 

  55. Ovchinnikov, O.V.; Evtukhova, A.V.; Kondratenko, T.S.; Smirnov, M.S.; Khokhlov, V.Y.; Erina, O.V.: Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vibr. Spectroscopy 86, 181–189 (2016)

    Article  Google Scholar 

  56. Rożek, P.; Król, M.; Mozgawa, W.: Spectroscopic studies of fly ash-based geopolymers. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy 198, 283–289 (2018)

    Article  Google Scholar 

  57. Somsesta, N.; Sricharoenchaikul, V.; Aht-Ong, D.: Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater. Chem. Phys. 240, 122221 (2020)

    Article  Google Scholar 

  58. Mohammed, N.; Lian, H.; Islam, M.S.; Strong, M.; Shi, Z.; Berry, R.M.; Yu, H.Y.; Tam, K.C.: Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chem. Eng. J. 417, 129237 (2021)

    Article  Google Scholar 

  59. Bingül, Z.: Determination of affecting parameters on removal of methylene blue dyestuff from aqueous solutions using natural clay: isotherm, kinetic, and thermodynamic studies. J. Mol. Struct. 1250, 131729 (2021)

    Article  Google Scholar 

  60. Asuha, S.; Fei, F.; Wurendaodi, W.; Zhao, S.; Wu, H.; Zhuang, X.: Activation of kaolinite by a low-temperature chemical method and its effect on methylene blue adsorption. Powder Technol. 361, 624–632 (2020)

    Article  Google Scholar 

  61. Belachew, N.; Hinsene, H.: Preparation of zeolite 4A for adsorptive removal of methylene blue: optimization, kinetics, isotherm, and mechanism study. Silicon 14(4), 1629–1641 (2022)

    Article  Google Scholar 

  62. Padmapriya, M.; Ramesh, S.T.; Biju, V.M.: Synthesis of seawater based geopolymer: characterization and adsorption capacity of methylene blue from wastewater. Mater. Today: Proc. 51, 1770–1776 (2022)

    Google Scholar 

  63. Ighalo, J.O.; Omoarukhe, F.O.; Ojukwu, V.E.; Iwuozor, K.O.; Igwegbe, C.A.: Cost of adsorbent preparation and usage in wastewater treatment: a review. Cleaner Chem. Eng. 3, 100042 (2022)

    Article  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hajjaji.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourak, A., Hajjaji, M. & Alagui, A. Cured NaOH-Etched Heated Clay-Cellulose Composites: Characterization, Dye Adsorption, and Desorption Study Using Response Surface Methodology. Arab J Sci Eng 48, 15927–15948 (2023). https://doi.org/10.1007/s13369-023-07838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07838-1

Keywords

Navigation