Skip to main content
Log in

Study on Axial Compression Properties of a New Type of Fiber-Reinforced Square Concrete-Filled Steel-Tube Composite Column

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Concrete-filled steel-tube (CFST) composite columns have been used in many different types of structures due to their high strength, good ductility, and practical construction advantages; however, the disadvantage of their weak anti-corrosion and fire protection capacity also restricts their use in some specialized engineering projects. In this paper, experimental investigations on the axial compression characteristics of square CFST composite columns with fiber reinforcement were conducted. The failure mechanisms, energy dissipation coefficient, load and strain fluctuations of the columns were analyzed. Meanwhile, the bearing capacity was verified by numerical simulation results. The findings demonstrate that fiber reinforced concrete improves the test columns' bearing capacity and deformation capacity; the steel fibers had more influence on load-bearing capacity, with the same steel content and steel tube thickness, the bearing capacity can be increased by 67.55%. Whereas the polyvinyl alcohol fibers had better improvement in ductility. The fiber-reinforced concrete specimens showed oblique shear failure, whereas the ordinary concrete specimens had poor deformation ability and exhibited crushing failure. The load-carrying capacity was more sensitive to changes in the steel content, With the steel content increasing from 1.56 to 3.04%, the carrying capacity increases by 33.69%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Almamoori, A.H.N.; Naser, F.H.; Dhahir, M.K., et al.: Effect of section shape on the behaviour of thin walled steel columns filled with light weight aggregate concrete: experimental investigation. Case Stud. Constr. Mater. 13, e00356 (2020). https://doi.org/10.1016/j.cscm.2020.e00356

    Article  Google Scholar 

  2. Han, L.H.; Hou, C.; Hua, Y.X., et al.: Concrete-filled steel tubes subjected to axial compression: life-cycle based performance. J. Constr. Steel Res. 170, 106063 (2020). https://doi.org/10.1016/j.jcsr.2020.106063

    Article  Google Scholar 

  3. Liu, Z.Z.; Lu, Y.Y.; Li, S.: Flexural behavior of steel fiber reinforced self-stressing recycled aggregate concrete-filled steel tube. J. Clean. Prod. 274, 122724 (2020). https://doi.org/10.1016/j.jclepro.2020.122724

    Article  Google Scholar 

  4. He, L.S.; Khadka, B.; Sun, X.B., et al.: Compressive strength of rammed earth filled steel tubular stub columns. Case Stud. Constr. Mater. 17, e01379 (2022). https://doi.org/10.1016/j.cscm.2022.e01379

    Article  Google Scholar 

  5. Yang, Y.K.; Wu, C.Q.; Liu, Z.X., et al.: Comparative study on square and rectangular UHPFRC-Filled steel tubular (CFST) columns under axial compression. Structures 34, 2054–2068 (2021). https://doi.org/10.1016/j.istruc.2021.08.104

    Article  Google Scholar 

  6. Shen, M.Y.; Huang, W.; Liu, J.L., et al.: Axial compressive behavior of rubberized concrete-filled steel tube short columns. Case Stud. Constr. Mater. 16, e00851 (2022). https://doi.org/10.1016/j.cscm.2021.e00851

    Article  Google Scholar 

  7. Zeng, J.J.; Zheng, Y.W.; Li, F., et al.: Behavior of FRP Ring-Confined CFST columns under axial compression. Compos. Struct. 257, 113166 (2021). https://doi.org/10.1016/j.compstruct.2020.113166

    Article  Google Scholar 

  8. Li, W.; Wang, T.; Han, L.H.: Seismic performance of concrete-filled double-skin steel tubes after exposure to fire: experiments. J. Constr. Steel Res. 154, 209–223 (2019). https://doi.org/10.1016/j.jcsr.2018.12.003

    Article  Google Scholar 

  9. Cheng, C.C.; Lin, Y.C.; Ke, Y.T., et al.: Detecting the interfacial bonding of concrete-filled steel tube columns after fire by two stress wave-based methods—a case study. Case Stud. Constr. Mater. 17, e01399 (2022). https://doi.org/10.1016/j.cscm.2022.e01399

    Article  Google Scholar 

  10. Syll, A.S.; Kanakubo, T.: Residual bond strength in reinforced concrete cracked by expansion agent filled pipe simulating rebar corrosion. Case Stud. Constr. Mater. 17, e01565 (2022). https://doi.org/10.1016/j.cscm.2022.e01565

    Article  Google Scholar 

  11. Pachideh, G.; Gholhaki, M.: Evaluation of concrete filled steel tube column confined with FRP. J. Test. Eval. 48, 4343–4354 (2020). https://doi.org/10.1520/JTE20180148

    Article  Google Scholar 

  12. Javed, M.F.; Farooq, F.; Memon, S.A., et al.: New prediction model for the ultimate axial capacity of concrete-filled steel tubes: an evolutionary approach. Curr. Comput. Aided Drug Des. 10(9), 741 (2020). https://doi.org/10.3390/cryst10090741

    Article  Google Scholar 

  13. Cai, J.M.; Pan, J.L.; Lu, C.: Mechanical behavior of ECC-encased CFST columns subjected to eccentric loading. Eng. Struct. 162, 22–28 (2018). https://doi.org/10.1016/j.engstruct.2018.02.029

    Article  Google Scholar 

  14. Wang, Z.S.; Feng, Y.J.; Guo, H.C., et al.: Seismic performance and damage evaluation of spiral ribbed thin-walled concrete filled and encased steel tube composite columns. Earthq. Struct. 20(6), 669–680 (2021). https://doi.org/10.12989/eas.2021.20.6.669

    Article  Google Scholar 

  15. Cakiroglu, C.; Islam, K.; Bekdaş, G., et al.: Explainable machine learning models for predicting the axial compression capacity of concrete filled steel tubular columns. Constr. Build. Mater. 356, 129227 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129227

    Article  Google Scholar 

  16. Xia, S.; Wei, X.Y.; He, C., et al.: Performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading: a further investigation. Case Stud. Constr. Mater. 17, e01399 (2022). https://doi.org/10.1016/j.cscm.2022.e01483

    Article  Google Scholar 

  17. Khan, M.K.I.; Lee, C.K.; Zhang, Y.X.; Rana, M.M.: Compressive behaviour of ECC confined concrete partially encased steel composite columns using high strength steel. Constr. Build. Mater. 265, 120783 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120783

    Article  Google Scholar 

  18. Wei, Y.; Zhu, C.; Miao, K.T., et al.: Compressive behavior of rectangular concrete-filled fiber-reinforced polymer and steel composite tube columns with stress-release grooves. Compos. Struct. 281, 114984 (2022). https://doi.org/10.1016/j.compstruct.2021.114984

    Article  Google Scholar 

  19. Zhu, G.; Ma, Y.X.; Tan, K.H.: Experimental and analytical investigation on precast concrete-encased concrete-filled steel tube column-to-column dry connections under axial tension. Structures 45, 523–541 (2022). https://doi.org/10.1016/j.istruc.2022.09.012

    Article  Google Scholar 

  20. Ekmekyapar, T.; Hasan, H.G.: The influence of the inner steel tube on the compression behaviour of the concrete filled double skin steel tube (CFDST) columns. Mar. Struct. 66, 197–212 (2019). https://doi.org/10.1016/j.marstruc.2019.04.006

    Article  Google Scholar 

  21. Aibero, V.; Ibanez, C.; Piquer, A.: Behaviour of slender concrete-filled dual steel tubular columns subjected to eccentric loads. J. Constr. Steel Res. 176, 1–14 (2021). https://doi.org/10.1016/j.jcsr.2020.106365

    Article  Google Scholar 

  22. Pachideh, G.; Gholhaki, M.; Moshtagh, A.: An experimental study on cyclic performance of the geometrically prismatic concrete-filled double skin steel tubular (CFDST) columns. IJST Trans. Civ. Eng. 45, 629–638 (2021). https://doi.org/10.1007/s40996-020-00410-z

    Article  Google Scholar 

  23. Pachideh, G.; Gholhaki, M.; Moshtagh, A.: Impact of temperature rise on the seismic performance of concrete-filled double skin steel columns with prismatic geometry. J. Test. Eval. 49(4), 2800–2815 (2020). https://doi.org/10.1520/JTE20200037

    Article  Google Scholar 

  24. Chen, C.; Zhao, Y.; Li, J.: Experimental investigation on the impact performance of concrete-filled FRP steel tubes. J. Eng. Mech. 141(2), 04014112 (2015). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000833

    Article  MathSciNet  Google Scholar 

  25. Kannangara, T.; Joseph, P.; Fragomeni, S., et al.: Existing theories of concrete spalling and test methods relating to moisture migration patterns upon exposure to elevated temperatures—a review. Case Stud. Constr. Mater. 16, 01111 (2022). https://doi.org/10.1016/j.cscm.2022.e01111

    Article  Google Scholar 

  26. Luo, Y.B.; Zhao, Y.C.; Chen, Y.B., et al.: Experimental studies on seismic performance of UHPSFRC-filled square steel tubular columns. Buildings 12(6), 798 (2022). https://doi.org/10.3390/buildings12060798

    Article  Google Scholar 

  27. Zeng, J.J.; Guo, Y.C.; Liao, J.J., et al.: Behavior of hybrid PET FRP confined concrete-filled high-strength steel tube columns under eccentric compression. Case Stud. Constr. Mater. 16, e00967 (2022). https://doi.org/10.1016/j.cscm.2022.e00967

    Article  Google Scholar 

  28. Cai, J.M.; Pan, J.L.; Tan, J.W., et al.: Nonlinear finite-element analysis for hysteretic behavior of ECC-encased CFST columns. Structures 25, 670–682 (2020). https://doi.org/10.1016/j.istruc.2020.03.036

    Article  Google Scholar 

  29. Cai, J.M.; Pan, J.L.; Xu, L., et al.: Mechanical behavior of RC and ECC/RC composite frames under reversed cyclic loading. J. Build. Eng. 35, 102036 (2021). https://doi.org/10.1016/j.jobe.2020.102036

    Article  Google Scholar 

  30. Khan, M.K.I.; Lee, C.K.; Zhang, Y.X.: Numerical modelling of engineered cementitious composites-concrete encased steel composite columns. J. Constr. Steel Res. 170, 106082 (2020). https://doi.org/10.1016/j.jcsr.2020.106082

    Article  Google Scholar 

  31. Memarzadeh, A.; Nematzadeh, M.: Axial compressive performance of steel reinforced fibrous concrete composite stub columns: experimental and theoretical study. Structures 34, 2455–2475 (2021). https://doi.org/10.1016/j.istruc.2021.08.130

    Article  Google Scholar 

  32. Frazão, C.; Barros, J.; Bogas, J.A., et al.: Technical and environmental potentialities of recycled steel fiber reinforced concrete for structural applications. J. Build. Eng. 45, 103579 (2022). https://doi.org/10.1016/j.jobe.2021.103579

    Article  Google Scholar 

  33. Fattouh, M.S.; Tayeh, B.A.; Agwa, I.S.: Improvement in the flexural behaviour of road pavement slab concrete containing steel fibre and silica fume. Case Stud. Constr. Mater. 18, e01720 (2023). https://doi.org/10.1016/j.cscm.2022.e01720

    Article  Google Scholar 

  34. Zhang, J.; Liu, X.; Kan, W., et al.: Seismic performance of steel tube-reinforced steel fiber high-strength concrete columns with ultra-high strength steel bars. J. Earthq. Eng. (2022). https://doi.org/10.1080/13632469.2022.2104961

    Article  Google Scholar 

  35. Yoo, D.Y.; Shin, W.; Chun, B., et al.: Assessment of steel fiber corrosion in self-healed ultra-high-performance fiber-reinforced concrete and its effect on tensile performance. Cem. Concr. Res. 133, 106091 (2020). https://doi.org/10.1016/j.cemconres.2020.106091

    Article  Google Scholar 

  36. Pachideh, G.; Gholhaki, M.: An experimental study on the effects of adding steel and polypropylene fibers to concrete on its resistance after different temperatures. J. Test. Eval. 47(2), 1606–1620 (2019). https://doi.org/10.1520/JTE20170145

    Article  Google Scholar 

  37. Zhang, Q.; Zhu, X.; Dai, H., et al.: Stress–strain relationship of alkali-resistant glass fiber ECC composites under compression. Adv. Eng. Sci. 54(5), 82–92 (2022). https://doi.org/10.15961/j.jsuese.202100815

    Article  Google Scholar 

  38. Gan, D.; Li, Z.; Zhang, T., et al.: Axial compressive behaviour of circular concrete-filled steel tubular stub columns with an inner bamboo culm. Structures 26, 156–168 (2020). https://doi.org/10.1016/j.istruc.2020.04.016

    Article  Google Scholar 

  39. Ding, Y.; Zhou, Z.; Wei, Y., et al.: Axial compressive behavior of ultra-high performance concrete confined by high-strength transverse reinforcements. Constr. Build. Mater. 324, 126518 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126518

    Article  Google Scholar 

  40. Zhong, S.T.: Concrete-Filled Steel Tube Structures, 3rd edn. Tsinghua University Press, Beijing (2003)

    Google Scholar 

  41. Han, L.H.: Concrete-Filled Steel Tube Structures-Theory and Practice, 3rd edn. Science Press, Beijing (2018)

    Google Scholar 

  42. GB 50010-2010: Code for Design of Concrete Structures. China Architecture and Building Press, Beijing (2010)

    Google Scholar 

  43. Wang, Z.S.; Han, J.Y.; Wei, J., et al.: The axial compression mechanical properties and factors influencing spiral-ribbed thin-walled square concrete-filled steel tube composite members. Case Stud. Constr. Mater. 17, e01510 (2022). https://doi.org/10.1016/j.cscm.2022.e01510

    Article  Google Scholar 

  44. Sun, L.Z.; Wu, W.J.; Li, W.: Analysis on axial compressive capacity of hybrid fiber cement-based composites encased CFST columns. Arch. Civ. Mech. Eng. 22(4), 197 (2022). https://doi.org/10.1007/s43452-022-00517-2

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from West Light Foundation of Chinese Academy of Sciences (Grant No. XAB2021YW14), Ningxia Key Research and Development Program (Grant No. 2021BEG03022), Natural Science Foundation of Ningxia (Grant No. 2022AAC03266), and Outstanding Young Teachers Training Foundation of Ningxia (Grant No. NGY2020054), Ningxia Outstanding Talent Support Program Project (Grant No. TJGC2019001 and TJGC2019007) are highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

XM: Conceptualization; Writing-Original draft preparation. CB: Methodology; Project administration. HW: Software; Methodology. JC: Supervision. FC: Visualization; Data curation. LKS: Writing-Reviewing and Editing.

Corresponding author

Correspondence to Chao Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Bao, C., Wang, H. et al. Study on Axial Compression Properties of a New Type of Fiber-Reinforced Square Concrete-Filled Steel-Tube Composite Column. Arab J Sci Eng 48, 13415–13427 (2023). https://doi.org/10.1007/s13369-023-07817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07817-6

Keywords

Navigation