Skip to main content

Advertisement

Log in

Novel Control Strategy for CESS Integrated DC Microgrid with On Grid and Off Grid Application

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to increasing role of DC generation, such as solar photovoltaic, fuel cells, numerous DC loads, addition of different energy storage systems, such as batteries and supercapacitors, DC microgrid is gaining more importance. Distributed generators, electronically controlled loads and composite energy storage systems make the system complex to control the DC bus voltage as constant. A Novel control strategy for CESS integrated DC Microgrid with On grid and Off Grid Applications is proposed for various modes of operation decided by existing conditions. First, utility grid mode is investigated for normal operation and grid side open circuit fault with supercapacitor and without supercapacitor. DC bus voltage, power flow control, real and reactive power control of three-phase nonlinear load is carried out by grid interface converter. Second, PV mode, when grid as well as battery are not able to control DC bus voltage, PV connected boost converter operation has to shift from MPPT to constant voltage control mode in coordination of supercapacitor. In combined control of PV and supercapacitor, later is mitigating the DC bus voltage ripple and stability problem due to constant power load. Third, energy storage mode, battery and super capacitor control the DC bus voltage by combined control strategy. Battery handles the energy density component, whereas supercapacitor power density. The Proposed scheme is simulated in MATLAB/SIMULINK environment for steady state and various transient/disturbance conditions and the corresponding operation, control and stability aspects are analyzed. The simulation results are verified with the help of Hardware-In-Loop (HIL) OPAL-RT (RT-4210) simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. James, S. M., Momoh, A., Saint, R.: Centralized and Decentralized Generated Power Systems-A Comparison Approach Future Grid Initiative. In: The Future Grid to Enable Sustainable Energy Systems, (2012)

  2. Dugan, R.C.; McDermott, T.E.: Distributed generation. IEEE Ind. Appl. Mag. 8(2), 19–25 (2002)

    Article  Google Scholar 

  3. Ackermann, T.; Andersson, G.; Söder, L.: Distributed generation: a definition. Electric Power Syst. Res. 57, 195–204 (2001)

    Article  Google Scholar 

  4. Bird, M. M. L., Lew, D.: Integrating variable renewable energy: challenges and Solutions. National Renewable Energy Laboratory, USA2013.

  5. Erdiwansyah, M., Husin, H., Nasaruddin, Zaki, Muhibbuddin, M.: A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems, vol. 6, no. 1, p. 3, 2021/02/23 2021.

  6. Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M.: DC microgrids—part II: a review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 31(5), 3528–3549 (2016)

    Article  Google Scholar 

  7. Hirsch, A.; Parag, Y.; Guerrero, J.: Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 90, 402–411 (2018)

    Article  Google Scholar 

  8. Silva, P.; Medeiros, C.M.D.S.: A promising future to DC power system: a review. IEEE Lat. Am. Trans. 15(9), 1639–1642 (2017)

    Article  Google Scholar 

  9. Justo, J.; Mwasilu, F.; Lee, J.; Jung, J.-W.: AC-microgrids versus DC-microgrids with distributed energy resources: a review. Renew. Sustain. Energy Rev. 24, 387–405 (2013)

    Article  Google Scholar 

  10. Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M.: DC microgrids—part i: a review of control strategies and stabilization techniques. IEEE Trans. Power Electron. 31(7), 4876–4891 (2016)

    Google Scholar 

  11. Kumar, D.; Zare, F.; Ghosh, A.: DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. IEEE Access 5, 12230–12256 (2017)

    Article  Google Scholar 

  12. Kumar, M.; Srivastava, S.C.; Singh, S.N.: Control strategies of a DC microgrid for grid connected and islanded operations. IEEE Trans. Smart Grid 6(4), 1588–1601 (2015)

    Article  Google Scholar 

  13. Amin, M. M.; Elshaer, M. A.; Mohammed, O. A.: DC bus voltage control for PV sources in a DC distribution system infrastructure. In: IEEE PES General Meeting, 2010, pp. 1–5.

  14. Nasirian, V.; Moayedi, S.; Davoudi, A.; Lewis, F.L.: Distributed cooperative control of DC microgrids. IEEE Trans. Power Electron. 30(4), 2288–2303 (2015)

    Article  Google Scholar 

  15. X. Li et al.: Robust and autonomous dc bus voltage control and stability analysis for a dc microgrid. In: 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016, pp. 3708–3714.

  16. Sharma, R.K.; Mishra, S.: Dynamic power management and control of a PV PEM fuel-cell-based standalone ac/dc microgrid using hybrid energy storage. IEEE Trans. Ind. Appl. 54(1), 526–538 (2018)

    Article  Google Scholar 

  17. Tummuru, N.R.; Mishra, M.K.; Srinivas, S.: Dynamic energy management of renewable grid integrated hybrid energy storage system. IEEE Trans. Industr. Electron. 62(12), 7728–7737 (2015)

    Article  Google Scholar 

  18. Xu, L.; Chen, D.: Control and operation of a DC microgrid With variable generation and energy storage. IEEE Trans. Power Delivery 26(4), 2513–2522 (2011)

    Article  Google Scholar 

  19. Zakzouk, N. E.; Lotfi, R. A.: Power flow control of a hybrid battery/supercapacitor standalone PV system under irradiance and load variations. In: 2020 10th International Conference on Power and Energy Systems (ICPES), 2020, pp. 469–474.

  20. Kollimalla, S.K.; Mishra, M.K.; Ukil, A.; Gooi, H.B.: DC grid voltage regulation using new HESS control strategy. IEEE Trans. Sustain. Energy 8(2), 772–781 (2017)

    Article  Google Scholar 

  21. Kotra, S.; Mishra, M.K.; Chaithanya, N.P.: “Design and small signal analysis of DC microgrid with hybrid energy storage system,” in. IEEE PES Asia-Pacific Power and Energy Eng. Conf. (APPEEC) 2017, 1–6 (2017)

    Google Scholar 

  22. Ensermu, G.; Bhattacharya, A.; Panigrahy, N.: Real-time simulation of smart DC microgrid with decentralized control system under source disturbances. Arabian J. Sci. Eng. 44, 7173–7185 (2019)

    Article  Google Scholar 

  23. Augustine, S.; Mishra, M. K.; Narasamma, N. L.: Proportional droop index algorithm for load sharing in DC microgrid. In: 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2014, pp. 1–6.

  24. Narsa Reddy Tummuru, M. K. M.; Srinivas, S.: Dynamic energy management of renewable grid integrated hybrid energy storage system. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. VOL. 62, , no. DECEMBER 2015, p. 10, 2015.

  25. Al-Nussairi, M.; Bayindir, R.; Sanjeevikumar, P.; Mihet-Popa, L.; Siano, P.: Constant power loads (CPL) with microgrids: problem definition, stability analysis and compensation techniques. Energies, vol. 10, 10/19 2017.

  26. Kwasinski, A.; Onwuchekwa, C.N.: Dynamic behavior and stabilization of DC microgrids with instantaneous constant-power loads. IEEE Trans. Power Electron. 26(3), 822–834 (2011)

    Article  Google Scholar 

  27. Shafiee, Q.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M.: "Modeling, stability analysis and active stabilization of multiple DC-microgrid clusters. IEEE Int. Energy Conf. (ENERGYCON) 2014, 1284–1290 (2014)

    Google Scholar 

  28. Kumar, R.; Sneha, S.; Behera, R. K.: Controller gain impact on islanded dc microgrid stability with constant power load. In: 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2018, pp. 1–6.

  29. Al-Nussairi, M. K.; Bayindir, R.: DC-DC boost converter stability with constant power load. In: 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), 2018, pp. 1061–1066.

  30. Li, X., et al.: Flexible interlinking and coordinated power control of multiple DC microgrids clusters. IEEE Trans. Sustain. Energy 9(2), 904–915 (2018)

    Article  MathSciNet  Google Scholar 

  31. Pillay, T.L.; Saha, A.K.: "A comparative analysis of a three phase neutral point clamped multilevel inverter. IEEE PES/IAS PowerAfrica 2018, 232–237 (2018)

    Google Scholar 

  32. Kesler, M.; Ozdemir, E.: Synchronous-reference-frame-based control method for UPQC under unbalanced and distorted load conditions. IEEE Trans. Industr. Electron. 58(9), 3967–3975 (2011)

    Article  Google Scholar 

  33. Geddada, N.; Karanki, S. B.; Mishra, M. K. J. I. I. C. o. P. E.: Drives, E. Systems, Synchronous reference frame based current controller with SPWM switching strategy for DSTATCOM applications," pp. 1–6, 2012.

  34. Soreng, B.; Garnayak, R.; Pradhan, R.: A synchronous reference frame based pll control for a grid-tied photovoltaic system. In: 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), 2017, pp. 1017–1022.

  35. Augustine, S.; Mishra, M.K.; Lakshminarasamma, N.: A unified control scheme for a standalone solar-PV low voltage DC Microgrid system with HESS. IEEE J. Emerg. Selected Topics in Power Electron. 8(2), 1351–1360 (2020)

    Article  Google Scholar 

  36. B. H. "Basic Calculation of a Boost Converter's Power Stage, Texas Instruments Incorporated, Application Report, , vol. SLVA372C–November 2009–Revised January 2014, p. 9, 2014.

  37. Chao, K.H.; Ming-Chang, T.; Chun-Hao, H.; Liu, Y.G.; Huang, L. C.: Design and implementation of a bidirectional DC-DC converter for stand-alone photovoltaic systems. International Journal of Computer, Consumer and Control (IJ3C), , paper vol. Vol. 2, no. (2013), p. 12, 2013.

  38. Erickson, R. W.: Fundamentals of power electronics, no. Second Edition, 2004. Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramjee Lal Meena.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, R.L., Bhattacharya, A. & Khatod, D.K. Novel Control Strategy for CESS Integrated DC Microgrid with On Grid and Off Grid Application. Arab J Sci Eng 48, 14681–14696 (2023). https://doi.org/10.1007/s13369-023-07796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07796-8

Keywords

Navigation