Skip to main content
Log in

The Durability of Concrete Made Up of Sugar Cane Bagasse Ash (SCBA) as a Partial Replacement of Cement: A Review

  • Review Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Concrete is one of the building industry’s most used construction materials. Reducing natural resources, enormous production costs, and environmental issues in cement production have encouraged researchers to partially explore suitable options to substitute Portland cement and the built environment. This article provides a thorough review of the research on the prudent utilization of sugarcane bagasse ash (SCBA) as a Portland cement replacement in the production of concrete. The methods used to produce SCBA, the effect of calcining temperature on bagasse ash, its physical and chemical characteristics and the strength development phenomenon are discussed. The impact of SCBA on the properties of concrete under the fresh state is also discussed. The physical and durability properties of concrete manufactured with SCBA are reviewed in-depth to understand its impending use for commercial applications. Finally, SCBA-related issues and challenges are described. A few of the outcomes are: (i) An organized incineration method is required for producing good quality SCBA, (ii) the optimum replacement level of cement by SCBA for mechanical and durability properties are 20%, (iii) improved durability due to an impervious microstructure of SCBA-concrete to harmful agents that cause degradation. Even though there is some disagreement among researchers, the majority continue to agree that using SCBA in cementitious composites is advantageous. However, researchers do not consider its usage in reinforced concrete elements such as slabs and beams; thus, further research is recommended. Finally, the formulation of codal recommendations on technical and environmental factors calls for additional research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

SCM:

Supplementary cementitious material

OPC:

Ordinary Portland cement

SCBA:

Sugar cane bagasse ash

SCBS:

Sugar cane bagasse sand

UtSCBA:

Untreated sugar cane bagasse ash

ASR:

Alkali silicate reaction

LWCBA:

Light weight concrete bagasse ash

P-SCBA:

Processed sugar cane bagasse ash

SAI:

Strength activity index

SiO2 :

Silicon dioxide

C2S:

Dicalcium silicate

XRD:

X-Ray Diffraction

BFS:

Blast furnace slag

G:

Graphite

CT:

Control

Ca(OH)2 :

Calcium hydroxide

XRF:

X-Ray Fluorescence

CSH:

Calcium Silicate Hydrate

EDX:

Energy Dispersive X-Ray Analysis

TGA:

Thermo gravimetric analysis

SSA:

Specific surface area

PPC:

Portland pozzolana cement

BA:

Bagasse ash

EDS:

Electron Dispersive Spectroscopy

UHPC:

Ultrahigh performance concrete

MIP:

Mercury Intrusion Porosimetry

O-SCBA:

Original sugar cane bagasse ash

RC:

Reinforced concrete

MOE:

Modulus of elasticity

C3S:

Tricalcium silicate

C3A:

Tricalcium aluminate

UPV:

The ultrasonic pulse velocity

RHA:

Rice husk ash

DTA:

Differential Thermal Analysis

LOI:

Loss on ignition

Q:

Quartz

Cr:

Cristobalite

SCB:

Sugar cane bagasse

PA:

Pozzolanic activity

XRD:

X–Ray Diffraction method

PAI:

Pozzolanic activity index

RCPT:

Rapid chloride penetrability test

ITZ:

Interfacial transition zone

UPV:

Ultra-sonic pulse velocity

CW:

Construction waste and

SEM:

Scanning Electron Microscope

XRD:

X-Ray Diffraction

FTIR:

Fourier Transform Infrared Spectroscopy

SCC:

Self-compacting concrete

RAC:

Recycled aggregate concrete

References

  1. Kumar, G.D.; Mohiuddin, M.Y.; Haleem, M.: An experimental study on partial replacement of bagasse ash in basalt cincrete mix. Int. J. Res. Sciens Adv. Eng. 2, 39–49 (2016)

    Google Scholar 

  2. Modani, P.O.; Vyawahare, M.R.: Utilization of bagasse ash as a partial replacement of fine aggregate in concrete. Proc. Eng. 51, 25–29 (2013). https://doi.org/10.1016/j.proeng.2013.01.007

    Article  Google Scholar 

  3. Loh, Y.R.; Sujan, D.; Rahman, M.E.; Das, C.A.: Resources, conservation and recycling sugarcane bagasse — the future composite material: a literature review. Resour. Conserv. Recycl. 75, 14–22 (2013)

    Article  Google Scholar 

  4. Cordeiro, G.C.: Ph.D Thesis., (2006)

  5. Cordeiro, G.C.; Tavares, L.M.; Toledo Filho, R.D.: Improved pozzolanic activity of sugar cane bagasse ash by selective grinding and classification. Cem. Concr. Res. 89, 269–275 (2016). https://doi.org/10.1016/j.cemconres.2016.08.020

    Article  Google Scholar 

  6. Jagadesh, P.; Ramachandramurthy, A.; Murugesan, R.: Overview on properties of sugarcane bagasse ash (SCBA) as Pozzolan. Indian J. Geo-Marine Sci. 47, 1934–1945 (2018)

    Google Scholar 

  7. Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M.: Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 172, 1049–1060 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.109

    Article  Google Scholar 

  8. Aprianti, E.; Shafigh, P.; Bahri, S.; Nodeh, J.: Supplementary cementitious materials origin from agricultural wastes—a review. Constr. Build. Mater. 74, 176–187 (2015). https://doi.org/10.1016/j.conbuildmat.2014.10.010

    Article  Google Scholar 

  9. Montakarntiwong, K.; Chusilp, N.; Tangchirapat, W.; Jaturapitakkul, C.: Materia ls and design strength and heat evolution of concretes containing bagasse ash from thermal power plants in sugar industry. Mater. Des. 49, 414–420 (2013). https://doi.org/10.1016/j.matdes.2013.01.031

    Article  Google Scholar 

  10. Rukzon, S.; Chindaprasirt, P.: Utilization of bagasse ash in high-strength concrete. J. Mater. 34, 45–50 (2012). https://doi.org/10.1016/j.matdes.2011.07.045

    Article  Google Scholar 

  11. Jahanzaib Khalil, M.; Aslam, M.; Ahmad, S.: Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete—A review. Constr. Build. Mater. 270, 121371 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121371

    Article  Google Scholar 

  12. Teixeira, S.R.; De Souza, A.E.; De Almeida Santos, G.T.; Peña, A.F.V.; Miguel, Á.G.: Sugarcane bagasse ash as a potential quartz replacement in red ceramic. J. Am. Ceram. Soc. 91, 1883–1887 (2008). https://doi.org/10.1111/j.1551-2916.2007.02212.x

    Article  Google Scholar 

  13. Nazriati, N.; Setyawan, H.; Affandi, S.; Yuwana, M.; Winardi, S.: Using bagasse ash as a silica source when preparing silica aerogels via ambient pressure drying. J. Non. Cryst. Solids. 400, 6–11 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.04.027

    Article  Google Scholar 

  14. Rahman, N.A.; Widhiana, I.; Juliastuti, S.R.; Setyawan, H.: Colloids and surfaces A: physicochemical and engineering aspects synthesis of mesoporous silica with controlled pore structure from bagasse ash as a silica source. Colloids Surf. A Physicochem. Eng. Asp. 476, 1–7 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.018

    Article  Google Scholar 

  15. Ines, S.T.; Mayers, G.L.; van Oss, C.J.: Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Encycl. Immunol. 28, 430–439 (1998)

    Google Scholar 

  16. Ganesan, K.; Rajagopal, K.; Thangavel, K.: Evaluation of bagasse ash as supplementary cementitious material. Cem. Concr. Compos. 29, 515–524 (2007). https://doi.org/10.1016/j.cemconcomp.2007.03.001

    Article  Google Scholar 

  17. Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K.: Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 23, 3352–3358 (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.030

    Article  Google Scholar 

  18. Santos, I.; Rodrigues, J.P.L.; Ramos, C.G.; Martuscelli, C.C.; Castañon, U.N.; Alves, V.C.C.; Abreu, G.M.: Effect of the chemical attack on the properties of cimentititous composites with partial substitution of ash from sugar cane bagasse in natura. (2017)

  19. Rossignolo, J.A.; Rodrigues, M.S.; Frias, M.; Santos, S.F.; Junior, H.S.: Improved interfacial transition zone between aggregate-cementitious matrix by addition sugarcane industrial ash. Cem. Concr. Compos. 80, 157–167 (2017). https://doi.org/10.1016/j.cemconcomp.2017.03.011

    Article  Google Scholar 

  20. Bahurudeen, A.; Marckson, A.V.; Kishore, A.; Santhanam, M.: Development of sugarcane bagasse ash based Portland pozzolana cement and evaluation of compatibility with superplasticizers. Constr. Build. Mater. 68, 465–475 (2014). https://doi.org/10.1016/j.conbuildmat.2014.07.013

    Article  Google Scholar 

  21. Li, Y.; Chai, J.; Wang, R.; Zhang, X.; Si, Z.: Utilization of sugarcane bagasse ash (SCBA) in construction technology: a state-of-the-art review. J. Build. Eng. 56, 104774 (2022). https://doi.org/10.1016/j.jobe.2022.104774

    Article  Google Scholar 

  22. Wasim, M.; Abadel, A.; Abu Bakar, B.H.; Alshaikh, I.M.H.: Future directions for the application of zero carbon concrete in civil engineering—A review. Case Stud. Constr. Mater. 17, e01318 (2022). https://doi.org/10.1016/j.cscm.2022.e01318

    Article  Google Scholar 

  23. Gamal, H.A.; El-Feky, M.S.; Alharbi, Y.R.; Abadel, A.A.; Kohail, M.: Enhancement of the concrete durability with hybrid nano materials. Sustainability 13(3), 1373 (2021)

    Article  Google Scholar 

  24. Clark, M.W.; Despland, L.M.; Lake, N.J.; Yee, L.H.; Anstoetz, M.; Arif, E.; Parr, J.F.; Doumit, P.: High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes. Heliyon 3, e00294 (2017). https://doi.org/10.1016/j.heliyon.2017.e00294

    Article  Google Scholar 

  25. Yadav, A.L.; Sairam, V.; Srinivasan, K.; Muruganandam, L.: Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash. Constr. Build. Mater. 258, 119231 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119231

    Article  Google Scholar 

  26. Moretti, J.P.; Sales, A.; Almeida, F.C.R.; Rezende, M.A.M.; Gromboni, P.P.: Joint use of construction waste (CW) and sugarcane bagasse ash sand (SBAS) in concrete. Constr. Build. Mater. 113, 317–323 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.062

    Article  Google Scholar 

  27. Shafigh, P.; Bin, H.; Zamin, M.; Zargar, M.: Agricultural wastes as aggregate in concrete mixtures—A review. Constr. Build. Mater. 53, 110–117 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.074

    Article  Google Scholar 

  28. Ali, S.; Javed, U.; Zafar, T.; Riaz, M.; Saeed, M.; Khizar, M.: Eco-friendly incorporation of sugarcane bagasse ash as partial replacement of sand in foam concrete. Clean. Eng. Technol. 4, 100164 (2021). https://doi.org/10.1016/j.clet.2021.100164

    Article  Google Scholar 

  29. Wi, K.; Lee, H.S.; Lim, S.; Song, H.; Hussin, M.W.; Ismail, M.A.: Use of an agricultural by-product, nano sized palm oil fuel ash as a supplementary cementitious material. Constr. Build. Mater. 183, 139–149 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.156

    Article  Google Scholar 

  30. Paris, J.M.; Roessler, J.G.; Ferraro, C.C.; Deford, H.D.; Townsend, T.G.: A review of waste products utilized as supplements to Portland cement in concrete. J. Clean. Prod. (2016). https://doi.org/10.1016/j.jclepro.2016.02.013

    Article  Google Scholar 

  31. Praveenkumar, S.; Sankarasubramanian, G.; Sindhu, S.: Strength, permeability and microstructure characterization of pulverized bagasse ash in cement mortars. Constr. Build. Mater. 238, 117691 (2020)

    Article  Google Scholar 

  32. Katare, V.D.; Madurwar, M.: V: Experimental characterization of sugarcane biomass ash—A review. Constr. Build. Mater. 152, 1–15 (2017)

    Article  Google Scholar 

  33. Deepika, S.; Anand, G.; Bahurudeen, A.; Santhanam, M.: Construction products with sugarcane Bagasse ash binder. J. Mater. Civ. Eng. 29, 04017189 (2017). https://doi.org/10.1061/(asce)mt.1943-5533.0001999

    Article  Google Scholar 

  34. Frías, M.; Villar, E.; Savastano, H.: Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496 (2011). https://doi.org/10.1016/j.cemconcomp.2011.02.003

    Article  Google Scholar 

  35. Christopher, F.; Bolatito, A.; Ahmed, S.: Gulf Organisation for Research and Development Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement—a review. Int. J. Sustain. Built Environ. 6, 675–692 (2017). https://doi.org/10.1016/j.ijsbe.2017.07.004

    Article  Google Scholar 

  36. Inbasekar, M.; Hariprasath, P.; Senthilkumar, D.: Study on potential utilization of sugarcane bagasse ash in steel fiber reinforced concrete. Int. J. Eng. Sci. Res. Technol. 5(4), 43–50 (2016)

    Google Scholar 

  37. Chagas, G.; Dias, R.; Filho, T.; Marcelo, L.; Moraes, E.D.; Fairbairn, R.: Cement and Concrete Research Ultra fi ne grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115 (2009). https://doi.org/10.1016/j.cemconres.2008.11.005

    Article  Google Scholar 

  38. Cordeiro, G.C.; Andreão, P.V.; Tavares, L.M.: Pozzolanic properties of ultrafine sugar cane bagasse ash produced by controlled burning. Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e02566

    Article  Google Scholar 

  39. Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K.: Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Constr. Build. Mater. 23, 3523–3531 (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.046

    Article  Google Scholar 

  40. Tijore, N.A.; Pathak, V.B.; Shah, R.A.: Utilization of sugarcane Bagasse ash in concrete. Int. J. Sci. Res. Dev. 1(9), 1938–1942 (2013)

    Google Scholar 

  41. Joshaghani, A.; Amin, M.: Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Constr. Build. Mater. 152, 818–831 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.041

    Article  Google Scholar 

  42. Cordeiro, G.C.; Kurtis, K.E.: Cement and Concrete Research Effect of mechanical processing on sugar cane bagasse ash pozzolanicity. Cem. Concr. Res. 97, 41–49 (2017). https://doi.org/10.1016/j.cemconres.2017.03.008

    Article  Google Scholar 

  43. Bahurudeen, A.; Santhanam, M.: Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem. Concr. Compos. 56, 32–45 (2015). https://doi.org/10.1016/j.cemconcomp.2014.11.002

    Article  Google Scholar 

  44. Villar-Cociña, E.; Rojas, M.F.; Morales, E.V.: Sugar cane wastes as pozzolanic materials: application of mathematical model. ACI Mater. J. 105, 258–264 (2008). https://doi.org/10.14359/19822

    Article  Google Scholar 

  45. Embong, R.; Shafiq, N.; Kusbiantoro, A.; Nuruddin, M.F.: Effectiveness of low-concentration acid and solar drying as pre-treatment features for producing pozzolanic sugarcane bagasse ash. J. Clean. Prod. 112, 953–962 (2016). https://doi.org/10.1016/j.jclepro.2015.09.066

    Article  Google Scholar 

  46. Xu, Q.; Ji, T.; Gao, S.J.; Yang, Z.; Wu, N.: Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials (Basel). 12, 1–19 (2018). https://doi.org/10.3390/ma12010039

    Article  Google Scholar 

  47. Batra, V.S.; Urbonaite, S.; Svensson, G.: Characterization of unburned carbon in bagasse fly ash. Fuel 87, 2972–2976 (2008). https://doi.org/10.1016/j.fuel.2008.04.010

    Article  Google Scholar 

  48. Batool, F.; Masood, A.; Ali, M.: Characterization of sugarcane Bagasse ash as pozzolan and influence on concrete properties. Arab. J. Sci. Eng. 45, 3891–3900 (2020). https://doi.org/10.1007/s13369-019-04301-y

    Article  Google Scholar 

  49. Bahurudeen, A.; Kanraj, D.; Gokul Dev, V.; Santhanam, M.: Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cem. Concr. Compos. 59, 77–88 (2015). https://doi.org/10.1016/j.cemconcomp.2015.03.004

    Article  Google Scholar 

  50. Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.D.M.R.: Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cement Concr. Res. 39(2), 110–115 (2009)

    Article  Google Scholar 

  51. Sales, A.; Lima, S.A.: Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag. 30, 1114–1122 (2010). https://doi.org/10.1016/j.wasman.2010.01.026

    Article  Google Scholar 

  52. Yadav, A.L.; Sairam, V.; Muruganandam, L.; Srinivasan, K.: An overview of the influences of mechanical and chemical processing on sugarcane bagasse ash characterisation as a supplementary cementitious material. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.118854

    Article  Google Scholar 

  53. Gupta, P.; Wirquin, E.; Bokhoree, C.: Case Studies in Construction Materials Sustainable concrete: Potency of sugarcane bagasse ash as a cementitious material in the construction industry. Case Stud. Constr. Mater. 14, e00545 (2021). https://doi.org/10.1016/j.cscm.2021.e00545

    Article  Google Scholar 

  54. Pereira, A.; Akasaki, J.L.; Melges, J.L.P.; Tashima, M.M.; Soriano, L.; Borrachero, M.V.; Monzó, J.; Payá, J.: Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceram. Int. 41, 13012–13024 (2015). https://doi.org/10.1016/j.ceramint.2015.07.001

    Article  Google Scholar 

  55. Cordeiro, G.C.; Filho, R.D.T.; Fairbairn, E.M.R.: Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 23, 3301–3303 (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.013

    Article  Google Scholar 

  56. Embong, R.; Shafiq, N.; Kusbiantoro, A.; Nuruddin, M.F.: Effectiveness of low-concentration acid and solar drying as pre-treatment features for producing pozzolanic sugarcane bagasse ash. J. Clean. Prod. 112, 953–962 (2016)

    Article  Google Scholar 

  57. Cordeiro, G.C.; Tavares, L.M.; Filho, R.D.T.: Cement and Concrete Research Improved pozzolanic activity of sugar cane bagasse ash by selective grinding and classi fi cation. Cem. Concr. Res. 89, 269–275 (2016). https://doi.org/10.1016/j.cemconres.2016.08.020

    Article  Google Scholar 

  58. Amin, N.U.: Use of Bagasse ash in concrete and its impact on the strength and chloride resistivity. J. Mater. Civ. Eng. 23(5), 717–720 (2011)

    Article  Google Scholar 

  59. Cordeiro, G.C.; Filho, R.D.T.; Tavares, L.M.; Fairbairn, E.M.R.: Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Constr. Build. Mater. 29, 641–646 (2012). https://doi.org/10.1016/j.conbuildmat.2011.08.095

    Article  Google Scholar 

  60. Malhotra, V.M.; Zhang, M.-H.: High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Mater. J. 93, 629–636 (1996)

    Google Scholar 

  61. Arif, E.; Clark, M.W.; Lake, N.: Sugar cane bagasse ash from a high-efficiency co-generation boiler as filler in concrete. Constr. Build. Mater. 151, 692–703 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.136

    Article  Google Scholar 

  62. Subramanian, S.; Pande, G.; De Weireld, G.; Giraudon, J.M.; Lamonier, J.F.; Batra, V.S.: Sugarcane bagasse fly ash as an attractive agro-industry source for VOC removal on porous carbon. Ind. Crops Prod. 49, 108–116 (2013). https://doi.org/10.1016/j.indcrop.2013.04.014

    Article  Google Scholar 

  63. Bahurudeen, A.; Kanraj, D.; Dev, V.G.; Santhanam, M.: Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cem. Concr. Compos. 59, 77–88 (2015)

    Article  Google Scholar 

  64. Sales, A.; Lima, S.A.: Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag. 30(6), 1114–1122 (2010). https://doi.org/10.1016/j.wasman.2010.01.026

    Article  Google Scholar 

  65. Norma mercosur nm-is0 14010:2000. 14010 (2000)

  66. Xu, Q.; Ji, T.; Gao, S.J.; Yang, Z.; Wu, N.: Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials 12(1), 39 (2018). https://doi.org/10.3390/ma12010039

    Article  Google Scholar 

  67. C618-19, A.: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM Int. West Conshohocken, PA, USA. (2019)

  68. Somna, R.; Jaturapitakkul, C.; Rattanachu, P.; Chalee, W.: Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete. Mater. Des. 36, 597–603 (2012). https://doi.org/10.1016/j.matdes.2011.11.065

    Article  Google Scholar 

  69. Jagadesh, P.; Ramachandramurthy, A.; Murugesan, R.: Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Constr. Build. Mater. 176, 608–617 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.037

    Article  Google Scholar 

  70. Imran, M.; Khan, A.R.A.: Characterization of agricultural waste sugarcane bagasse ash at 1100 C with various hours. Mater. Today Proc. 5, 3346–3352 (2018)

    Article  Google Scholar 

  71. Murugesan, T.; Vidjeapriya, R.; Bahurudeen, A.: Sugarcane Bagasse ash-blended concrete for effective resource utilization between sugar and construction industries. Sugar Tech. 22, 858–869 (2020). https://doi.org/10.1007/s12355-020-00794-2

    Article  Google Scholar 

  72. Rêgo, J.H.S.; Nepomuceno, A.A.; Figueiredo, E.P.; Hasparyk, N.P.; Borges, L.D.: Effect of particle size of residual rice-husk ash in consumption of Ca(OH)2. J. Mater. Civ. Eng. 27, 1–9 (2015). https://doi.org/10.1061/(asce)mt.1943-5533.0001136

    Article  Google Scholar 

  73. Kameshwar, P.; Athira, G.; Bahurudeen, A.; Nanthagopalan, P.: Suitable pretreatment process for rice husk ash towards dosage optimization and its effect on properties of cementitious mortar. Struct. Concr. 22, E501–E513 (2021). https://doi.org/10.1002/suco.202000227

    Article  Google Scholar 

  74. Rukzon, S.; Chindaprasirt, P.: Use of ternary blend of Portland cement and two pozzolans to improve durability of high-strength concrete. KSCE J. Civ. Eng. 18, 1745–1752 (2014). https://doi.org/10.1007/s12205-014-0461-y

    Article  Google Scholar 

  75. Gopinath, A.; Bahurudeen, A.; Appari, S.; Nanthagopalan, P.: A circular framework for the valorisation of sugar industry wastes: review on the industrial symbiosis between sugar, construction and energy industries. J. Clean. Prod. 203, 89–108 (2018). https://doi.org/10.1016/j.jclepro.2018.08.252

    Article  Google Scholar 

  76. Bureau of Indian Standards: IS 17127- Method of test for pozzolanic materials. , New Delhi

  77. Morales, E.V.; Villar-Cociña, E.; Frías, M.; Santos, S.F.; Savastano, H.: Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cem. Concr. Compos. 31, 22–28 (2009). https://doi.org/10.1016/j.cemconcomp.2008.10.004

    Article  Google Scholar 

  78. Nair, D.G.; Fraaij, A.; Klaassen, A.A.; Kentgens, A.P.: A structural investigation relating to the pozzolanic activity of rice husk ashes. Cem. Concr. Res. 38(6), 861–869 (2008). https://doi.org/10.1016/j.cemconres.2007.10.004

    Article  Google Scholar 

  79. Bahurudeen, A.; Wani, K.; Basit, M.A.; Santhanam, M.: Assesment of Pozzolanic performance of sugarcane Bagasse ash. J. Mater. Civ. Eng. 28, 04015095 (2016). https://doi.org/10.1061/(asce)mt.1943-5533.0001361

    Article  Google Scholar 

  80. Paul, S.C.; Mbewe, P.B.K.; Kong, S.Y.: Agricultural solid waste as source of supplementary cementitious materials in developing countries. Materials (2019). https://doi.org/10.3390/ma12071112

    Article  Google Scholar 

  81. Salim, R.W.; Ndambuki, J.M.; Adedokun, D.A.: Improving the bearing strength of sandy loam soil compressed earth block bricks using sugercane bagasse ash. Sustainability (2014). https://doi.org/10.3390/su6063686

    Article  Google Scholar 

  82. Sebastin, S.; Priya, A.K.; Karthick, A.; Sathyamurthy, R.; Ghosh, A.: Agro waste sugarcane bagasse as a cementitious material for reactive powder concrete. Clean Technol. 2(4), 476–491 (2020)

    Article  Google Scholar 

  83. Abdulkadir, T.S.; Oyejobi, D.O.; Lawal, A.A.: Evaluation of sugarcane bagasse ash as a replacement for cement in concrete works. Acta Tech. Corviniensis Bull. Eng. 7(3), 71 (2014)

    Google Scholar 

  84. Kazmi, S.M.S.; Munir, M.J.; Patnaikuni, I.; Wu, Y.F.: Pozzolanic reaction of sugarcane bagasse ash and its role in controlling alkali silica reaction. Constr. Build. Mater. 148, 231–240 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.025

    Article  Google Scholar 

  85. Lima, S.A.; Varum, H.; Sales, A.; Neto, V.F.: Analysis of the mechanical properties of compressed earth block masonry using the sugarcane bagasse ash. Constr. Build. Mater. 35, 829–837 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.127

    Article  Google Scholar 

  86. Ganesan, K.: Evaluation of bagasse ash as supplementary cementitious material. Cem. Concr Compos. 29, 515–524 (2007). https://doi.org/10.1016/j.cemconcomp.2007.03.001

    Article  Google Scholar 

  87. Rerkpiboon, A.; Tangchirapat, W.; Jaturapitakkul, C.: Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 101, 983–989 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.140

    Article  Google Scholar 

  88. Jittin, V.; Bahurudeen, A.: Evaluation of rheological and durability characteristics of sugarcane bagasse ash and rice husk ash based binary and ternary cementitious system. Constr. Build. Mater. 317, 125965 (2022). https://doi.org/10.1016/j.conbuildmat.2021.125965

  89. Adeleke, A.A.; Ikubanni, P.P.; Orhadahwe, T.A.; Christopher, C.T.; Akano, J.M.; Agboola, O.O.; Adegoke, S.O.; Balogun, A.O.; Ibikunle, R.A.: Sustainability of multifaceted usage of biomass: A review. Heliyon. 7, e08025 (2021). https://doi.org/10.1016/j.heliyon.2021.e08025

    Article  Google Scholar 

  90. Osinubi, K.J.; Bafyau, V.; Eberemu, A.O.; Adrian, O.: Bagasse ash stabilization of lateritic soil. 281–290

  91. Osinubi, K.; Bafyau, V.; Eberemu, A.O.: Bagasse ash stabilization of lateritic soil. Presented at the January 1 (2009)

  92. Jamsawang, P.; Poorahong, H.; Yoobanpot, N.; Songpiriyakij, S.: Improvement of soft clay with cement and bagasse ash waste. Constr. Build. Mater. 154, 61–71 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.188

    Article  Google Scholar 

  93. Hussein, A.A.E.; Shafiq, N.; Nuruddin, M.F.; Memon, F.A.: Compressive strength and microstructure of sugar cane bagasse ash concrete. Res. J. Appl. Sci. Eng. Technol. 7(12), 2569–2577 (2014). https://doi.org/10.19026/rjaset.7.569

    Article  Google Scholar 

  94. Venkatesan, P.; Ramasamy, V.: Behaviour of bagasse ash and bagasse fibre in concrete. YMER Digit. (2022). https://doi.org/10.37896/YMER21.02/40

    Article  Google Scholar 

  95. Patil, S.; Nirmale, S.; Sutar, A.: Experimental investigations of SCBA-blended concrete. Int. J. Mod. Trends Eng. Res. 2, 66–70 (2015)

    Google Scholar 

  96. Dhengare, S.W.; Raut, S.P.; Bandwal, N.V.; Khangan, A.: Investigation into utilization of sugarcane bagasse ash as supplementary cementitious material in concrete. Int. J. 3, 109–116 (2015)

    Google Scholar 

  97. Rukzon, S.; Chindaprasirt, P.: Utilization of bagasse ash in high-strength concrete. Mater. Des. 34, 45–50 (2012). https://doi.org/10.1016/j.matdes.2011.07.045

    Article  Google Scholar 

  98. Tabish, M.; Zaheer, M.M.; Baqi, A.: Effect of nano-silica on mechanical, microstructural and durability properties of cement-based materials: a review. J. Build. Eng. 65, 105676 (2023). https://doi.org/10.1016/j.jobe.2022.105676

    Article  Google Scholar 

  99. Hasan, S.D.; Zaheer, M.M.; Ahmad, A.: Mechanical Performance and Microstructure of High Strength Concrete Using Nano-Silica. Springer, Singapore (2021)

    Book  Google Scholar 

  100. Zaheer, M.M.; Jafri, M.S.: Varisha: multi-walled carbon nano-tubes for enhancing the performance of cementitious composites. J. Phys. Conf. Ser. (2020). https://doi.org/10.1088/1742-6596/1706/1/012131

    Article  Google Scholar 

  101. Zaheer, M.M.; Jafri, M.S.; Sharma, R.: Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites. Adv. Concr. Constr. 8, 207–215 (2019). https://doi.org/10.12989/acc.2019.8.3.207

    Article  Google Scholar 

  102. Eramma, H.: Influence of BAGASSE ASH and nanosilica on strength properties of concrete. Int. Res. J. Eng. Technol. 2, (2015)

  103. Sua-iam, G.; Makul, N.: Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. J. Clean. Prod. (2013). https://doi.org/10.1016/j.jclepro.2013.06.009

    Article  Google Scholar 

  104. Onyelowe, K.; Van, D.B.; Igboayaka, C.; Orji, F.; Ugwuanyi, H.: Materials Science for energy technologies rheology of mechanical properties of soft soil and stabilization protocols in the developing countries-Nigeria. Mater. Sci. Energy Technol. 2, 8–14 (2019). https://doi.org/10.1016/j.mset.2018.10.001

    Article  Google Scholar 

  105. Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F.: Recycling of sugarcane bagasse ash waste in the production of clay bricks. J. Environ. Manag 101, 7–12 (2012). https://doi.org/10.1016/j.jenvman.2012.01.032

    Article  Google Scholar 

  106. Santos, M.; Frias, M.: Improved interfacial transition zone between aggregate-cementitious matrix by addition sugarcane industrial ash. Cem. Concr. Compos. 80, 157–167 (2017). https://doi.org/10.1016/j.cemconcomp.2017.03.011

    Article  Google Scholar 

  107. Loganayagan, S.; Mohan, N.C.; Dhivyabharathi, S.: Sugarcane bagasse ash as alternate supplementary cementitious material in concrete. Mater. Today Proc. 45, 1004–1007 (2021). https://doi.org/10.1016/j.matpr.2020.03.060

    Article  Google Scholar 

  108. Ashish, P.K.; Singh, D.: Development of empirical model for predicting G∗/Sinδ and viscosity value for nanoclay and Carbon Nano Tube modified asphalt binder. Constr. Build. Mater. 165, 363–371 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.021

    Article  Google Scholar 

  109. Prusty, J.K.; Patro, S.K.; Basarkar, S.S.: Concrete using agro-waste as fine aggregate for sustainable built environment—a review. Int. J. Sustain. Built Environ. 5, 312–333 (2016). https://doi.org/10.1016/j.ijsbe.2016.06.003

    Article  Google Scholar 

  110. Singh, N.B.; Singh, V.D.; Rai, S.: Hydration of bagasse ash-blended portland cement. Cem. Concr. Res. 30(9), 1485–1488 (2000)

    Article  Google Scholar 

  111. Bureau of Indian Standards: Methods of physical tests for hydraulic cement. Part V- Determination of initial and final setting times. (1988)

  112. Sudalaimani, K.; Shanmugasundaram, M.: Influence of ultrafine natural steatite powder on setting time and strength development of cement. 2014, (2014)

  113. Tantawy, M.A.; El-Roudi, A.M.; Salem, A.A.: Immobilization of Cr(VI) in bagasse ash blended cement pastes. Constr. Build. Mater. 30, 218–223 (2012). https://doi.org/10.1016/j.conbuildmat.2011.12.016

    Article  Google Scholar 

  114. Hossain, K.M.A.: Properties of volcanic pumice based cement and lightweight concrete. Cem. Concr. Res. 34(2), 283–291 (2004). https://doi.org/10.1016/j.cemconres.2003.08.004

    Article  Google Scholar 

  115. Rao, M.; Prabath, N.V.N.: Green concrete using agro industrial waste (sugarcane bagasse ASH). Int. J. Soft Comput. Eng. (IJSCE) 5, 86–92 (2015)

    Google Scholar 

  116. Srinivasan, R.; Sathiya, K.: Experimental study on bagasse ash in concrete. Int. J. Serv. Learn. Eng. Humanit. Eng. Soc. Entrep. 5, 60–66 (2010). https://doi.org/10.24908/ijsle.v5i2.2992

    Article  Google Scholar 

  117. Arshad, S.; Sharif, M.B.; Irfan-ul-Hassan, M.; Khan, M.; Zhang, J.L.: Efficiency of supplementary cementitious materials and natural fiber on mechanical performance of concrete. Arab. J. Sci. Eng. 45, 8577–8589 (2020). https://doi.org/10.1007/s13369-020-04769-z

    Article  Google Scholar 

  118. Hussein, A.A.E.; Shafiq, N.; Nuruddin, M.F.; Memon, F.A.: Compressive strength and microstructure of sugar cane bagasse ash concrete. Res. J. Appl. Sci. Eng. Technol. 7, 2569–2577 (2014). https://doi.org/10.19026/rjaset.7.569

    Article  Google Scholar 

  119. Shatat, M.R.: Hydration behavior and mechanical properties of blended cement containing various amounts of rice husk ash in presence of metakaolin. Arab. J. Chem. 9, S1869–S1874 (2016). https://doi.org/10.1016/j.arabjc.2013.12.006

    Article  MathSciNet  Google Scholar 

  120. Kumari, A.; Kumar, P.S.: Experimental study on partial replacement of cement by sugaracne bagasse ash. Int. J. Innov. Res. Sci. Eng. Technol. 4(7), 2347–6710 (2015)

    Google Scholar 

  121. Wight, J.K.; MacGregor, J.G.: Reinforced Concrete-Mechanics and Design. Pearson, New Jersey (2012)

    Google Scholar 

  122. Zareei, S.A.; Ameri, F.; Bahrami, N.: Microstructure, strength, and durability of eco-friendly concretes containing sugarcane bagasse ash. Constr. Build. Mater. 184, 258–268 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.153

    Article  Google Scholar 

  123. Muangtong, P.; Sujjavanich, S.; Boonsalee, S.; Poomiapiradee, S.; Chaysuwan, D.: Effects of fine bagasse ash on the workability and compressive strength of mortars. Chiang Mai J. Sci. 40(1), 126–134 (2013)

    Google Scholar 

  124. Neville, A.M.: The properties of concrete. (1995)

  125. Venkatachalam, G.; Renjith, S.C.; Nilay, P.S.; Vasan, M.; Annamalai, R.: Investigations into tensile strength of banana fibre reinforced hybrid polymer matrix composites. Eng. Rev. 36, 13–18 (2016)

    Google Scholar 

  126. Hossain, M.M.; Karim, M.R.; Hasan, M.; Hossain, M.K.; Zain, M.F.M.: Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review. Constr. Build. Mater. 116, 128–140 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.147

    Article  Google Scholar 

  127. Joshaghani, A.; Ramezanianpour, A.A.; Rostami, H.: Effect of incorporating Sugarcane Bagasse Ash (SCBA) in mortar to examine durability of sulfate attack. In: International Conference on Concrete Sustainability - Iccs16. pp. 576–596 (2016)

  128. Rattanachu, P.; Tangchirapat, W.; Jaturapitakkul, C.: Water permeability and sulfate resistance of eco-friendly high-strength concrete composed of ground bagasse ash and recycled concrete aggregate. J. Mater. Civ. Eng. 31, 1–8 (2019). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002740

    Article  Google Scholar 

  129. Maldonado-García, M.A.; Hernández-Toledo, U.I.; Montes-García, P.; Valdez-Tamez, P.L.: Long-term corrosion risk of thin cement composites containing untreated sugarcane bagasse ash. J. Mater. Civ. Eng. 31(4), 04019020 (2019). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002647

    Article  Google Scholar 

  130. Ariza-Figueroa, H.A.; Bosch, J.; Baltazar-Zamora, M.A.; Croche, R.; Santiago-Hurtado, G.; Landa-Ruiz, L.; Mendoza-Rangel, J.M.; Bastidas, J.M.; Almeraya-Calderón, F.; Bastidas, D.M.: Corrosion behavior of AISI 304 stainless steel reinforcements in SCBA-SF ternary ecological concrete exposed to MgSO4. Materials (Basel). (2020). https://doi.org/10.3390/ma13102412

    Article  Google Scholar 

  131. Almeida, F.C.R.; Sales, A.; Moretti, J.P.; Mendes, P.C.D.: Use of sugarcane bagasse ash sand (SBAS) as corrosion retardant for reinforced Portland slag cement concrete. Constr. Build. Mater. 226, 72–82 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.217

    Article  Google Scholar 

  132. Setayesh, P.; Suresh, N.; Bindiganavile, V.: Sugar cane bagasse ash as a pozzolanic admixture in concrete for resistance to sustained elevated temperatures. Constr. Build. Mater. 153, 929–936 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.107

    Article  Google Scholar 

  133. Bahurudeen, A.; Santhanam, M.: Performance Evaluation of Sugarcane Bagasse Ash-Based Cement for Durable Concrete. (2014)

  134. Chindaprasirt, P.; Sujumnongtokul, P.; Posi, P.: Science direct durability and mechanical properties of pavement concrete containing bagasse ash. Mater. Today Proc. 17, 1612–1626 (2019). https://doi.org/10.1016/j.matpr.2019.06.191

    Article  Google Scholar 

  135. Madurwar, M.V.; Ralegaonkar, R.V.; Mandavgane, S.A.: Application of agro-waste for sustainable construction materials: a review. Constr. Build. Mater. 38, 872–878 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.011

    Article  Google Scholar 

  136. Hassan, A.; Mahmud, H. Bin.; Jumaat, M.Z.; Alsubari, B.; Abdulla, A.: Effect of magnesium sulphate on self-compacting concrete containing supplementary cementitious materials. Adv. Mater. Sci. Eng. (2013). https://doi.org/10.1155/2013/232371

    Article  Google Scholar 

  137. Nie, Q.; Zhou, C.; Shu, X.; He, Q.; Huang, B.: Chemical, mechanical, and durability properties of concrete with local mineral admixtures under sulfate environment in Northwest China. Materials 7(5), 3772–3785 (2014). https://doi.org/10.3390/ma7053772

    Article  Google Scholar 

  138. Hall, C.: Water sorptivity of mortars and concretes: a review. Mag. Concr. Res. 41(147), 51–61 (1989)

    Article  Google Scholar 

  139. Koleva, D.A.: an innovative approach to control steel reinforcement corrosion by self-healing. Materials (2018). https://doi.org/10.3390/ma11020309

    Article  Google Scholar 

  140. Kyosti, T: Corrosion of Steel in Concrete. (1982)

  141. Junaid, M.T.; Kayali, O.; Khennane, A.; Black, J.: A mix design procedure for low calcium alkali activated fly ash-based concretes. Constr. Build. Mater. 79, 301–310 (2015). https://doi.org/10.1016/j.conbuildmat.2015.01.048

    Article  Google Scholar 

  142. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917–2933 (2007). https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  143. Subramaniyan, K.S.; Sivaraja, M.: Assessment of sugarcane bagasse ash concrete on mechanical and durability properties. Adv. Nat. Appl. Sci. 24, 257–262 (2016). https://doi.org/10.5829/idosi.mejsr.2016.24.S1.52

    Article  Google Scholar 

  144. Yazici, H.: The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete. Constr. Build. Mater. 22, 456–462 (2008). https://doi.org/10.1016/j.conbuildmat.2007.01.002

    Article  Google Scholar 

  145. Ramyar, K.; Inan, G.: Sodium sulfate attack on plain and blended cements. Build. Environ. 42, 1368–1372 (2007). https://doi.org/10.1016/j.buildenv.2005.11.015

    Article  Google Scholar 

  146. Rambabu, P.V.; Aditya, G.: Effect of acidic environment (HCL) on concrete with sugarcane bagasse ash as Pozzolona. Int. J. Eng. Res. Appl. 5, 59–64 (2015)

    Google Scholar 

  147. Rithuparna, R.; Jittin, V.; Bahurudeen, A.: Influence of different processing methods on the recycling potential of agro-waste ashes for sustainable cement production: a review. J. Clean. Prod. 316, 128242 (2021). https://doi.org/10.1016/j.jclepro.2021.128242

    Article  Google Scholar 

  148. Mohan, R.; Athira, G.; Mali, A.K.; Bahurudeen, A.; Nanthagopalan, P.: Systematic pretreatment process and optimization of sugarcane bagasse ash dosage for use in cement-based products. J. Mater. Civ. Eng. 33, 1–10 (2021). https://doi.org/10.1061/(asce)mt.1943-5533.0003650

    Article  Google Scholar 

  149. Akram, T.; Memon, S.A.; Obaid, H.: Production of low cost self compacting concrete using bagasse ash. Constr. Build. Mater. 23, 703–712 (2009). https://doi.org/10.1016/j.conbuildmat.2008.02.012

    Article  Google Scholar 

  150. Dias, M.O.S.; Cunha, M.P.; Jesus, C.D.F.; Rocha, G.J.M.; Pradella, J.G.C.; Rossell, C.E.V.; Maciel Filho, R.; Bonomi, A.: Second generation ethanol in Brazil: Can it compete with electricity production? Bioresour. Technol. 102, 8964–8971 (2011). https://doi.org/10.1016/j.biortech.2011.06.098

    Article  Google Scholar 

  151. How Cement Is Made, https://www.cement.org/cement-concrete/how-cement-is-made

  152. Liu, Z.; Deng, P.; Zhang, Z.: Application of silica-rich biomass ash solid waste in geopolymer preparation: a review. Constr. Build. Mater. 356, 129142 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129142

    Article  Google Scholar 

  153. Liew, K.M.; Sojobi, A.O.; Zhang, L.W.: Green concrete: prospects and challenges. Constr. Build. Mater. 156, 1063–1095 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.008

    Article  Google Scholar 

  154. Nawaz, M.; Heitor, A.; Sivakumar, M.: Geopolymers in construction - recent developments. Constr. Build. Mater. 260, 120472 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120472

    Article  Google Scholar 

Download references

Funding

No financial interests are directly or indirectly related to the work submitted for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Moonis Zaheer.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaheer, M.M., Tabish, M. The Durability of Concrete Made Up of Sugar Cane Bagasse Ash (SCBA) as a Partial Replacement of Cement: A Review. Arab J Sci Eng 48, 4195–4225 (2023). https://doi.org/10.1007/s13369-023-07698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07698-9

Keywords

Navigation