Skip to main content
Log in

A Robust State Feedback Optimal Control Law with Backstepping Approach for Steering Control of an Autonomous Underwater Vehicle Using Semi-definite Programming

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the desired yaw orientation for an autonomous underwater vehicle is attained by acquiring a cascaded control structure based on a robust optimal control algorithm with a backstepping approach. A robust state feedback optimal control law is designed to control the yaw rate. Hence, the desired yaw rate is intended to be obtained by the backstepping controller by controlling the desired yaw orientation. The implementation of the proposed robust control algorithm is formulated by using semi-definite programming. A linear quadratic regulator in terms of linear matrix inequality is designed to address the control problem. The design of robust optimal control law in the steering plane is achieved by considering an uncertain polytopic AUV system. Realization of the proposed control algorithm is conducted in MATLAB/Simulink environment using the YALMIP tool. Robust behavior is ensured by the proposed control algorithm while tracking the desired yaw. The robustness analysis is extended by considering the various ranges of specific uncertain parameters to highlight the efficacies of the proposed control algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NED:

North, East and Down direction

\(\{Y\}\) :

Body fixed frame

\(\{N\}\) :

NED frame

\(\{F\}\) :

Serret–Frenet reference frame

m :

Mass of the AUV

\(u_\mathrm{s},v_\mathrm{s},r_\mathrm{s}\) :

Linear and angular velocities

\(x_\mathrm{s},y_\mathrm{s},\psi _\mathrm{s}\) :

Linear and angular positions

\(I_x,I_y,I_z\) :

Moments of inertia about x, y and z axes in body-fixed frame

(\(x_\mathrm{B}, y_\mathrm{B}, z_\mathrm{B}\)):

Center of buoyancy

(\(x_\mathrm{G}, y_\mathrm{G}, z_\mathrm{G}\)):

Center of gravity

\(T_\mathrm{d}\) :

Total thrust in vertical plane

\(\epsilon \) :

Lyapunov function

\(\delta _\mathrm{r}\) :

Rudder angle

\(d_{FN}\) :

Position of \(\{F\}\) frame relative to \(\{N\}\) frame

\(d_{YF}\) :

Position of \(\{Y\}\) frame relative to \(\{F\}\) frame

\(d_{YN}\) :

Position of \(\{Y\}\) frame relative to \(\{N\}\) frame

\(c_{\mathrm{f}}\) :

Curvilinear abscissa along the path

\(\psi _{\mathrm{f}}\) :

Yaw angle between \(\{N\}\) and \(\{F\}\) coordinate system

s:

Parameters of steering plane

D:

Desired values for path following

f:

Parameters of Serret–Frenet frame

References

  1. Palomeras, N.; Furfaro, T.; Williams, D.P.; Carreras, M.; Dugelay, S.: Automatic target recognition for mine countermeasure missions using forward-looking sonar data. IEEE J. Ocean. Eng. 47(1), 141–161 (2022). https://doi.org/10.1109/JOE.2021.3103269

    Article  Google Scholar 

  2. Jung, J.; Park, J.; Choi, J.; Choi, H.-T.: Bathymetric pose graph optimization with regularized submap matching. IEEE Access 10, 31155–31164 (2022)

    Article  Google Scholar 

  3. Hu, S.; Feng, A.; Shi, J.; Li, J.; Khan, F.; Zhu, H.; Chen, J.; Chen, G.: Underwater gas leak detection using an autonomous underwater vehicle (robotic fish). Process Saf. Environ. Protect. 167, 89–96 (2022)

    Article  Google Scholar 

  4. Lapierre, L.; Soetanto, D.: Nonlinear path-following control of an auv. Ocean Eng. 34(11–12), 1734–1744 (2007)

    Article  Google Scholar 

  5. Xiang, X.; Liu, C.; Lapierre, L.; Jouvencel, B.: Synchronized path following control of multiple homogenous underactuated auvs. J. Syst. Sci. Complex. 25(1), 71–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng, Z.-P.; Allen, R.: \({{H}_{\infty }}\) autopilot design for autonomous underwater vehicles. J. Shanghai Jiaotong Univ. Sci. 15(2), 194–198 (2010)

    Article  Google Scholar 

  7. Petrich, J.; Stilwell, D.J.: Robust control for an autonomous underwater vehicle that suppresses pitch and yaw coupling. Ocean Eng. 38(1), 197–204 (2011)

    Article  Google Scholar 

  8. Kamarlouei, M.; Ghassemi, H.: Robust control for horizontal plane motions of autonomous underwater vehicles. J. Braz. Soc. Mech. Sci. Eng. 38(7), 1921–1934 (2016)

    Article  Google Scholar 

  9. Rath, B.N.; Subudhi, B.: A robust model predictive path following controller for an autonomous underwater vehicle. Ocean Eng. 244, 110265 (2022)

    Article  Google Scholar 

  10. Spencer, D.A.; Wang, Y.: Slqr suboptimal human-robot collaborative guidance and navigation for autonomous underwater vehicles. In: 2015 American Control Conference (ACC), pp. 2131–2136 (2015). https://doi.org/10.1109/ACC.2015.7171048

  11. Kim, E.; Fan, S.; Bose, N.; Nguyen, H.: Current estimation and path following for an autonomous underwater vehicle (auv) by using a high-gain observer based on an auv dynamic model. Int. J. Control Autom. Syst. 19(1), 478–490 (2021)

    Article  Google Scholar 

  12. Wei, Y.; Zheng, Z.; Li, Q.; Jiang, Z.; Yang, P.: Robust tracking control of an underwater vehicle and manipulator system based on double closed-loop integral sliding mode. Int. J. Adv. Robot. Syst. 17(4), 1729881420941778 (2020)

    Article  Google Scholar 

  13. Liang, X.; Wan, L.; Blake, J.I.; Shenoi, R.A.; Townsend, N.: Path following of an underactuated auv based on fuzzy backstepping sliding mode control. Int. J. Adv. Robot. Syst. 13(3), 122 (2016)

    Article  Google Scholar 

  14. Kim, K.; Ura, T.: Optimal guidance for autonomous underwater vehicle navigation within undersea areas of current disturbances. Adv. Robot. 23(5), 601–628 (2009)

    Article  Google Scholar 

  15. Roy, S.; Shome, S.; Nandy, S.; Ray, R.; Kumar, V.: Trajectory following control of auv: a robust approach. J. Inst. Eng. India Ser. C 94(3), 253–265 (2013)

  16. Melo, J.; Matos, A.: A data-driven particle filter for terrain based navigation of sensor-limited autonomous underwater vehicles. Asian J. Control 21(4), 1659–1670 (2019)

    Article  MATH  Google Scholar 

  17. Zheng, J.; Song, L.; Liu, L.; Yu, W.; Zhu, S.; Wang, Y.; Chen, C.: Fixed-time extended state observer-based trajectory tracking control for autonomous underwater vehicles. Asian J. Control 24(2), 686–701 (2022)

    Article  Google Scholar 

  18. Batista, P.; Silvestre, C.; Oliveira, P.: A two-step control approach for docking of autonomous underwater vehicles. Int. J. Robust Nonlinear Control 25(10), 1528–1547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, Y.; Gao, J.; Chen, Y.; Bian, C.; Zhang, F.; Liang, Q.: Adaptive neural network control for visual docking of an autonomous underwater vehicle using command filtered backstepping. Int. J. Robust Nonlinear Control 32(8), 4716–4738 (2022)

    Article  MathSciNet  Google Scholar 

  20. Liu, F.; Shen, Y.; He, B.; Wang, D.; Wan, J.; Sha, Q.; Qin, P.: Drift angle compensation-based adaptive line-of-sight path following for autonomous underwater vehicle. Appl. Ocean Res. 93, 101943 (2019)

    Article  Google Scholar 

  21. Jiao, C.; Yu, L.; Su, X.; Wen, Y.; Dai, X.: Adaptive hybrid impedance control for dual-arm cooperative manipulation with object uncertainties. Automatica 140, 110232 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mahapatra, S.; Subudhi, B.; Rout, R.: Diving control of an autonomous underwater vehicle using nonlinear \({{H}_{\infty }}\) measurement feedback technique. In: OCEANS 2016-Shanghai, pp. 1–5 (2016). IEEE

  23. Mahapatra, S.; Subudhi, B.: Design of a steering control law for an autonomous underwater vehicle using nonlinear \({{H}_{\infty }}\) state feedback technique. Nonlinear Dyn. 90(2), 837–854 (2017)

    Article  MATH  Google Scholar 

  24. Mahapatra, S.; Subudhi, B.: Design and experimental realization of a backstepping nonlinear \({{H}_{\infty }}\) control for an autonomous underwater vehicle using a nonlinear matrix inequality approach. Trans. Inst. Meas. Control 40(11), 3390–3403 (2018)

    Article  Google Scholar 

  25. Mahapatra, S.; Subudhi, B.: Nonlinear matrix inequality approach based heading control for an autonomous underwater vehicle with experimental realization. IFAC J. Syst. Control 16, 100138 (2021)

    Article  MathSciNet  Google Scholar 

  26. Mahapatra, S.; Subudhi, K.B.; Rout, B.R.: Nonlinear \({{H}_{\infty }}\) control for an autonomous underwater vehicle in the vertical plane. IFAC-PapersOnLine 49, 391–395 (2016)

    Article  Google Scholar 

  27. Mahapatra, S.; Subudhi, B.: Nonlinear \({{H}_{\infty }}\) state and output feedback control schemes for an autonomous underwater vehicle in the dive plane. Trans. Inst. Meas. Control 40, 2024–2038 (2018)

    Article  Google Scholar 

  28. Vadapalli, S.; Mahapatra, S.: 3d path following control of an autonomous underwater robotic vehicle using backstepping approach based robust state feedback optimal control law. J. Mar. Sci. Eng. 11(2), (2023). https://doi.org/10.3390/jmse11020277

  29. Londhe, P.; Mohan, S.; Patre, B.; Waghmare, L.: Robust task-space control of an autonomous underwater vehicle-manipulator system by pid-like fuzzy control scheme with disturbance estimator. Ocean Eng. 139, 1–13 (2017)

    Article  Google Scholar 

  30. Zendehdel, N.; Gholami, M.: Robust self-adjustable path-tracking control for autonomous underwater vehicle. Int. J. Fuzzy Syst. 23(1), 216–227 (2021)

    Article  Google Scholar 

  31. Li, Y.; Ma, T.; Chen, P.; Jiang, Y.; Wang, R.; Zhang, Q.: Autonomous underwater vehicle optimal path planning method for seabed terrain matching navigation. Ocean Eng. 133, 107–115 (2017)

    Article  Google Scholar 

  32. King, P.; Vardy, A.; Forrest, A.L.: Teach-and-repeat path following for an autonomous underwater vehicle. J. Field Robot. 35(5), 748–763 (2018)

    Article  Google Scholar 

  33. Zhang, Q.; Lin, J.; Sha, Q.; He, B.; Li, G.: Deep interactive reinforcement learning for path following of autonomous underwater vehicle. IEEE Access 8, 24258–24268 (2020). https://doi.org/10.1109/ACCESS.2020.2970433

    Article  Google Scholar 

  34. Guo, K.; Pan, Y.; Zheng, D.; Yu, H.: Composite learning control of robotic systems: a least squares modulated approach. Automatica 111, 108612 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Veselỳ, V.; Ilka, A.: Generalized robust gain-scheduled pid controller design for affine lpv systems with polytopic uncertainty. Syst. Control Lett. 105, 6–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bedioui, N.; Houimli, R.; Besbes, M.: Simultaneous sensor and actuator fault estimation for continuous-time polytopic lpv system. Int. J. Syst. Sci. 50(6), 1290–1302 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hu, C.; Jaimoukha, I.M.: New iterative linear matrix inequality based procedure for \({{H}_{2}}\)and \({{H}_{\infty }}\) state feedback control of continuous-time polytopic systems. Int. J. Robust Nonlinear Control 31(1), 51–68 (2021)

    Article  Google Scholar 

  38. Abolpour, R.; Dehghani, M.; Talebi, H.A.: Output feedback controller design for discrete lti systems with polytopic uncertainty via direct searching of the design space. Asian J. Control 6, 66 (2021)

    Google Scholar 

  39. Li, L.; Lu, Y.; Meng, X.: Preview control of polytopic time-varying systems subject to actuator saturation. Asian J. Control 6, 66 (2022)

    Google Scholar 

  40. Zhang, J.; Swain, A.K.; Nguang, S.K.: Robust observer-based fault diagnosis for nonlinear systems using matlab® (2016)

  41. Lakhekar, G.V.; Waghmare, L.M.; Jadhav, P.G.; Roy, R.G.: Robust diving motion control of an autonomous underwater vehicle using adaptive neuro-fuzzy sliding mode technique. IEEE Access 8, 109891–109904 (2020)

    Article  Google Scholar 

  42. Silvestre, C.; Pascoal, A.: Control of the infante auv using gain scheduled static output feedback. Control Eng. Pract. 12(12), 1501–1509 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasish Mahapatra.

Ethics declarations

Conflict of interest

There is no conflict of interest in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadapalli, S., Mahapatra, S. A Robust State Feedback Optimal Control Law with Backstepping Approach for Steering Control of an Autonomous Underwater Vehicle Using Semi-definite Programming. Arab J Sci Eng 48, 14449–14462 (2023). https://doi.org/10.1007/s13369-023-07689-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07689-w

Keywords

Navigation