Skip to main content

Advertisement

Log in

A New Integrated Process for LNG Production Based on the Single Mixed Refrigerant: Energy, Exergy, Environmental and Economic Analysis

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a new method for the LNG has been proposed based on the SMR process. In the proposed process, an ORC is added to the conventional SMR process and the BOG is used as a coolant in the main heat exchanger. ASPEN HYSYS software utilizing the Peng–Robinson equation of state is used to simulate the SMR and SMR-ORC. The specific energy consumption, total exergy efficiency, and carbon dioxide emissions of the proposed method are compared with the conventional SMR process. Finally, an economic evaluation was performed on both processes. The simulation results showed that in the conventional process the total exergy efficiency and specific energy consumption are 34% and 647 \(\frac{{{\text{kWh}}}}{{{\text{ton}}}}\), respectively, while in the proposed process the total exergy efficiency has reached 39% and the energy consumption is reduced to 472 \(\frac{{{\text{kWh}}}}{{{\text{ton}}}}\). Also, the environmental assessment of carbon dioxide emissions from the production of electrical energy required by pumps and compressors showed that the proposed process has 28.51% less carbon dioxide emissions than the conventional SMR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

APEA:

Aspen Process Economic Analyzer

ACC:

Annual capital cost

BOG:

Boil-off gas

CEPCI:

Chemical engineering price cost index

CWC:

Cold warehouse cooling

C3MR:

Propane precooling mixed refrigerant

DMR:

Dual-mixed refrigerant

FCI:

Total Fixed Capital Investment

h:

Specific enthalpy

IEA:

International energy agency

LNG:

Liquefied natural gas

LHS:

Light hydrocarbon separation

MSMR:

Modified mixed refrigerant liquefaction process

MSMR:

Modified single mixed refrigerant

MR:

Mixed refrigerant

\(n_{{\text{co2,net}}}\) :

Net of carbon dioxide emission

ORC:

Organic Rankine cycle

PNEC:

Parallel nitrogen expansion liquefaction process

SEC:

Specific energy consumption

SMR:

Single mixed refrigerant

s:

Specific entropy

TCOP:

Total cost of production

TAC:

Total annual cost

TEC:

Total major equipment’s purchase cost

VSO:

Vortex search optimization

\(\dot{X}_{{{\text{des}}}}\) :

Exergy destruction

\(\dot{E}_{{\text{D}}}^{{{\text{total}}}}\) :

Total exergy destruction

\(\dot{W}_{{{\text{used}}}}^{{{\text{total}}}}\) :

Tal power consumed

\(\eta_{{{\text{ex}}}}\) :

Exergy efficiency

0 (zero):

Ambient conditions

\(\dot{E}_{{{\text{NG}}}}\) :

Exergy of natural gas

References

  1. Nawaz, A.; Qyyum, M.A.; Qadeer, K.; Khan, M.S.; Ahmad, A.; Lee, S.; Lee, M.: Optimization of mixed fluid cascade LNG process using a multivariate Coggins step-up approach: overall compression power reduction and exergy loss analysis. Int. J. Refrig. 104, 189–200 (2019)

    Article  Google Scholar 

  2. Fahmy, M.; Nabih, H.; El-Nigeily, M.: Enhancement of the efficiency of the Open Cycle Phillips Optimized Cascade LNG process. Energy Convers. Manag. 112, 308–318 (2016)

    Article  Google Scholar 

  3. Song, C.; Tan, S.; Qu, F.; Liu, W.; Wu, Y.: Optimization of mixed refrigerant system for LNG processes through graphically reducing exergy destruction of cryogenic heat exchangers. Energy 168, 200–206 (2019)

    Article  Google Scholar 

  4. Mokhatab, S.; Poe, W.A.; Mak, J.: Handbook of Natural Gas Transmission and Processing: Principles and Practices. Gulf Professional Publishing, Houston (2018)

    Google Scholar 

  5. Moein, P.; Sarmad, M.; Ebrahimi, H.; Zare, M.; Pakseresht, S.; Vakili, S.Z.: APCI-LNG single mixed refrigerant process for natural gas liquefaction cycle: analysis and optimization. J. Nat. Gas Sci. Eng. 26, 470–479 (2015)

    Article  Google Scholar 

  6. Nguyen, T.-V.; Elmegaard, B.: Assessment of thermodynamic models for the design, analysis and optimisation of gas liquefaction systems. Appl. Energy 183, 43–60 (2016)

    Article  Google Scholar 

  7. WEO, I., IEA World Energy Outlook 2008. 2008, OECD/IEA Paris, France.

  8. Tak, K.; Choi, J.; Ryu, J.-H.; Moon, I.: Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process. Energy 206, 118132 (2020)

    Article  Google Scholar 

  9. He, T.; Mao, N.; Liu, Z.; Qyyum, M.A.; Lee, M.; Pravez, A.M.: Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes. Energy 199, 117378 (2020)

    Article  Google Scholar 

  10. He, T.; Karimi, I.A.; Ju, Y.: Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications. Chem. Eng. Res. Des. 132, 89–114 (2018)

    Article  Google Scholar 

  11. Mortazavi, A.; Somers, C.; Hwang, Y.; Radermacher, R.; Rodgers, P.; Al-Hashimi, S.: Performance enhancement of propane pre-cooled mixed refrigerant LNG plant. Appl. Energy 93, 125–131 (2012)

    Article  Google Scholar 

  12. Hatcher, P.; Khalilpour, R.; Abbas, A.: Optimisation of LNG mixed-refrigerant processes considering operation and design objectives. Comput. Chem. Eng. 41, 123–133 (2012)

    Article  Google Scholar 

  13. Vatani, A.; Mehrpooya, M.; Palizdar, A.: Energy and exergy analyses of five conventional liquefied natural gas processes. Int. J. Energy Res. 38, 1843–1863 (2014)

    Article  Google Scholar 

  14. Xiong, X.; Lin, W.; Gu, A.: Design and optimization of offshore natural gas liquefaction processes adopting PLNG (pressurized liquefied natural gas) technology. J. Nat. Gas Sci. Eng. 30, 379–387 (2016)

    Article  Google Scholar 

  15. Remeljej, C.W.; Hoadley, A.F.A.: An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes. Energy 31, 2005–2019 (2006)

    Article  Google Scholar 

  16. Lim, W.; Lee, I.; Tak, K.; Cho, J.H.; Ko, D.; Moon, I.: Efficient configuration of a natural gas liquefaction process for energy recovery. Ind. Eng. Chem. Res. 53, 1973–1985 (2014)

    Article  Google Scholar 

  17. Jin, C.; Son, H.; Lim, Y.: Optimization and economic analysis of liquefaction processes for offshore units. Appl. Therm. Eng. 163, 114334 (2019)

    Article  Google Scholar 

  18. Khan, M.S.; Lee, S.; Getu, M.; Lee, M.: Knowledge inspired investigation of selected parameters on energy consumption in nitrogen single and dual expander processes of natural gas liquefaction. J. Nat. Gas Sci. Eng. 23, 324–337 (2015)

    Article  Google Scholar 

  19. Wu, J.; Ju, Y.: Design and optimization of natural gas liquefaction process using brazed plate heat exchangers based on the modified single mixed refrigerant process. Energy 186, 115819 (2019)

    Article  Google Scholar 

  20. He, T.; Liu, Z.; Ju, Y.; Parvez, A.M.: A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant. Energy 167, 1–12 (2019)

    Article  Google Scholar 

  21. Nguyen, T.-V.; Rothuizen, E.D.; Markussen, W.B.; Elmegaard, B.: Thermodynamic comparison of three small-scale gas liquefaction systems. Appl. Therm. Eng. 128, 712–724 (2018)

    Article  Google Scholar 

  22. Qyyum, M.A.; Lee, M.: Hydrofluoroolefin-based novel mixed refrigerant for energy efficient and ecological LNG production. Energy 157, 483–492 (2018)

    Article  Google Scholar 

  23. Qyyum, M.A.; Ali, W.; Long, N.V.D.; Khan, M.S.; Lee, M.: Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine. Energy 144, 968–976 (2018)

    Article  Google Scholar 

  24. Rehman, A.; Qyyum, M.A.; Qadeer, K.; Zakir, F.; He, X.; Nawaz, A.; Lee, M.; Wang, L.: Single mixed refrigerant LNG process: investigation of improvement potential, operational optimization, and real potential for further improvements. J. Clean. Prod. 284, 125379 (2021)

    Article  Google Scholar 

  25. Rehman, A.; Qyyum, M.A.; Ahmad, A.; Nawaz, S.; Lee, M.; Wang, L.: Performance enhancement of nitrogen dual expander and single mixed refrigerant LNG processes using jaya optimization approach. Energies 13, 3278 (2020)

    Article  Google Scholar 

  26. Qyyum, M.A.; Yasin, M.; Nawaz, A.; He, T.; Ali, W.; Haider, J.; Qadeer, K.; Nizami, A.-S.; Moustakas, K.; Lee, M.: Single-solution-based vortex search strategy for optimal design of offshore and onshore natural gas liquefaction processes. Energies 13, 1732 (2020)

    Article  Google Scholar 

  27. Almeida-Trasvina, F.; Smith, R.; Jobson, M.: Development of an energy-efficient single mixed refrigerant cycle for small-scale LNG production. Ind. Eng. Chem. Res. 60(32), 12049–12067 (2021)

    Article  Google Scholar 

  28. Pan, J.; Li, M.; Li, R.; Tang, L.; Bai, J.: Design and analysis of LNG cold energy cascade utilization system integrating light hydrocarbon separation, organic Rankine cycle and direct cooling. Appl. Therm. Eng. 213, 118672 (2022)

    Article  Google Scholar 

  29. Kim, S.; Cho, Y.; Kim, M.S.; Kim, M.: Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators. Energy 147, 1216–1226 (2018)

    Article  Google Scholar 

  30. Kim, S.; Kim, M.S.; Kim, M.: Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid. Energy 198, 117353 (2020)

    Article  Google Scholar 

  31. Astolfi, M.; Fantolini, A.M.; Valenti, G.; De Rinaldis, S.; Inglese, L.D.; Macchi, E.: Cryogenic ORC to enhance the efficiency of LNG regasification terminals. Energy Procedia 129, 42–49 (2017)

    Article  Google Scholar 

  32. Xue, X.; Guo, C.; Du, X.; Yang, L.; Yang, Y.: Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery. Energy 83, 778–787 (2015)

    Article  Google Scholar 

  33. He, T.; Ma, H.; Ma, J.; Mao, N.; Liu, Z.: Effects of cooling and heating sources properties and working fluid selection on cryogenic organic Rankine cycle for LNG cold energy utilization. Energy Convers. Manag. 247, 114706 (2021)

    Article  Google Scholar 

  34. Bao, J.; Lin, Y.; Zhang, R.; Zhang, N.; He, G.: Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery. Appl. Therm. Eng. 126, 566–582 (2017)

    Article  Google Scholar 

  35. Una, D.; Oduola, M.; Odagme, B.: Sensitivity analysis of a single mixed refrigerant liquefaction process of natural gas. In: SPE Nigeria Annual International Conference and Exhibition. OnePetro (2016).

  36. Hajji, A.; Chahartaghi, M.; Kahani, M.: Thermodynamic analysis of natural gas liquefaction process with propane pre-cooled mixed refrigerant process (C3MR). Cryogenics 103, 102978 (2019)

    Article  Google Scholar 

  37. Sabbagh, O.; Fanaei, M.A.; Arjomand, A.; Ahmadi, M.H.: Multi-objective optimization assessment of a new integrated scheme for co-production of natural gas liquids and liquefied natural gas. Sustain. Energy Technol. Assess. 47, 101493 (2021)

    Google Scholar 

  38. Nikkho, S.; Abbasi, M.; Zahirifar, J.; Saedi, M.; Vatani, A.: Energy and exergy investigation of two modified single mixed refrigerant processes for natural gas liquefaction. Comput. Chem. Eng. 140, 106854 (2020)

    Article  Google Scholar 

  39. Tahmasebi, S.; Abbasabadi, A.B.; Ghasemi, N.; Javadian, H.; Mashhadi, S.; Fattahi, M.; Arian, Y.R.; Maddah, H.: Investigation of various feed conditions on NGL recovery plant energy and exergy performance: a case study. J. Nat. Gas Sci. Eng. 22, 83–89 (2015)

    Article  Google Scholar 

  40. Darvish, K.; Ehyaei, M.A.; Atabi, F.; Rosen, M.A.: Selection of optimum working fluid for organic Rankine cycles by exergy and exergy-economic analyses. Sustainability 7, 15362–15383 (2015)

    Article  Google Scholar 

  41. Ding, H.; Sun, H.; Sun, S.; Chen, C.: Analysis and optimisation of a mixed fluid cascade (MFC) process. Cryogenics 83, 35–49 (2017)

    Article  Google Scholar 

  42. Jin, C.; Yuan, Y.; Son, H.; Lim, Y.: Novel propane-free mixed refrigerant integrated with nitrogen expansion natural gas liquefaction process for offshore units. Energy 238, 121765 (2022)

    Article  Google Scholar 

  43. Shamsi, M.; Obaid, A.A.; Farokhi, S.; Bayat, A.: A novel process simulation model for hydrogen production via reforming of biomass gasification tar. Int. J. Hydrog. Energy 47, 772–781 (2022)

    Article  Google Scholar 

  44. Shamsi, M.; Moghaddas, S.; Naeiji, E.; Farokhi, S.: Techno-economic, energy, exergy, and environmental comparison of hydrogen production from natural gas, biogas, and their combination as feedstock. Arab. J. Sci. Eng. (2023)

  45. Kotas, T.J.: The Exergy Method of Thermal Plant Analysis. Paragon Publishing, Trowbridge (2012)

    Google Scholar 

  46. Shamsi, M.; Farokhi, S.; Pourghafari, M.; Bayat, A.: Tuning the natural gas dew point by Joule–Thomson and mechanical refrigeration processes: a comparative energy and exergy analysis. J. Pet. Sci. Eng. 212, 110270 (2022)

    Article  Google Scholar 

  47. Qyyum, M.A.; Ahmed, F.; Nawaz, A.; He, T.; Lee, M.: Teaching-learning self-study approach for optimal retrofitting of dual mixed refrigerant LNG process: energy and exergy perspective. Appl. Energy 298, 117187 (2021)

    Article  Google Scholar 

  48. Marmolejo-Correa, D.; Gundersen, T.: A comparison of exergy efficiency definitions with focus on low temperature processes. Energy 44, 477–489 (2012)

    Article  Google Scholar 

  49. Nguyen, T.B.; Zondervan, E.: Methanol production from captured CO2 using hydrogenation and reforming technologies environmental and economic evaluation. J. Util. 34, 1–11 (2019)

    Article  Google Scholar 

  50. Alipour, S.; Sadeghi, A.; Omidvarborna, H.; Karimi, A.: Techno-economic assessment of the AHP based selected method for separating formic acid from an aqueous effluent. J. Chem. Pet. Eng. 56, 105–121 (2022)

    Google Scholar 

  51. Peters, M.S.; Timmerhaus, K.D.; West, R.E.: Plant Design and Economics for Chemical Engineers. McGraw-Hill, New York (2003)

    Google Scholar 

  52. Sinnott, R.; Towler, G.: Chemical Engineering Design, SI Butterworth-Heinemann, Oxford (2019)

    Google Scholar 

  53. Smith, R.: Chemical Process: Design and Integration. Wiley, Hoboken (2005)

    Google Scholar 

  54. Mofid, H.; Jazayeri-Rad, H.; Shahbazian, M.; Fetanat, A.: Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm. Energy 172, 286–303 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shamsi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsi, M., Rahimi, M., Sheidaei, M. et al. A New Integrated Process for LNG Production Based on the Single Mixed Refrigerant: Energy, Exergy, Environmental and Economic Analysis. Arab J Sci Eng 48, 15805–15821 (2023). https://doi.org/10.1007/s13369-023-07659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07659-2

Keywords

Navigation