Skip to main content
Log in

Optimal Design of RC Bracket and Footing Systems of Precast Industrial Buildings Using Fuzzy Differential Evolution Incorporated Virtual Mutant

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In a structural system, the connections (i.e., between the structural elements and the structure to the ground) play an important role in the integrity and stability of the system. So, using the certain pre-defined conventional properties for these systems can stand far away from the expected optimal condition. In this regard, the current study deals with optimal design (i.e., cost and geometry parameters under different loading conditions) of the footing systems applied in the precast industrial buildings and the concrete bracket system as the privilege connection type in the RC frames. To provide a broad perspective about the optimal design of these systems, several distinct optimization models are generated and solved. For solving the proposed optimization problems, a recently developed self-adaptive and non-gradient-based method, so-called Fuzzy Differential Evolution Incorporated Virtual Mutant (FDEVM), is utilized. In the developed models, effect of different loading conditions on the optimum geometry and cost parameters of the proposed systems are investigated. For this aim, sixty three different probable situations are considered and solved, and the attained outcomes are reported through illustrative tables and diagrams. The outcomes indicate that the vertical load and bracket width play important role in the total cost of the system. In addition, provided behavioral diagrams indicate that the FDEVM method shows a dynamic adaptive behavior on during the optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mortazavi, A.: Size and layout optimization of truss structures with dynamic constraints using the interactive fuzzy search algorithm. Eng. Optim. (2021). https://doi.org/10.1080/0305215X.2020.1726341

    Article  MathSciNet  Google Scholar 

  2. Mortazavi, A.: Large-scale structural optimization using a fuzzy reinforced swarm intelligence algorithm. Adv. Eng. Softw. (2020). https://doi.org/10.1016/j.advengsoft.2020.102790

    Article  Google Scholar 

  3. Moloodpoor, M.; Mortazavi, A.; Özbalta, N.: Thermo-economic optimization of double-pipe heat exchanger using a compound swarm intelligence. Heat Transf. Res. (2021). https://doi.org/10.1615/HEATTRANSRES.2021037293

    Article  Google Scholar 

  4. Mei, L.; Wang, Q.: Structural optimization in civil engineering: a literature review. Science 2, 78 (2021)

    Google Scholar 

  5. Mortazavi, A.: The performance comparison of three Metaheuristic algorithms on the size, layout and topology optimization of truss structures. Mugla J. Sci. Technol. 5, 28–41 (2019)

    Article  Google Scholar 

  6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 -International Conference on Neural Networks, pp. 1942–1948 (1995)

  7. Rao, R.V.; Savsani, V.J.; Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. CAD Comput. Aided Des. (2011). https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  8. Akay, B.; Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. (2012). https://doi.org/10.1007/s10845-010-0393-4

    Article  MATH  Google Scholar 

  9. Zheng, Y.J.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Oper. Res. (2015). https://doi.org/10.1016/j.cor.2014.10.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Arora, S.; Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. (2019). https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  11. Mortazavi, A.: Comparative assessment of five metaheuristic methods on distinct problems. Dicle Univ. J. Eng. 5, 899 (2019). https://doi.org/10.24012/dumf.585790

    Article  Google Scholar 

  12. Mortazavi, A., Togan, V.: Metaheuristic algorithms for optimal design of truss structures. In: Studies in Systems, Decision and Control (2021)

  13. Moloodpoor, M.; Mortazavi, A.: Simultaneous optimization of fuel type and exterior walls insulation attributes for residential buildings using a swarm intelligence. Int. J. Environ. Sci. Technol. (2021). https://doi.org/10.1007/s13762-021-03323-0

    Article  Google Scholar 

  14. Moloodpoor, M.; Mortazavi, A.; Ozbalta, N.: Thermal analysis of parabolic trough collectors via a swarm intelligence optimizer. Sol. Energy. (2019). https://doi.org/10.1016/j.solener.2019.02.008

    Article  Google Scholar 

  15. Mortazavi, A.; Toğan, V.: Triangular units based method for simultaneous optimizations of planar trusses. Adv. Comput. Des. 2, 8 (2017). https://doi.org/10.12989/acd.2017.2.3.195

    Article  Google Scholar 

  16. Sun, L.; Chen, S.; Xu, J.; Tian, Y.; Zhou, Y.: Improved Monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation. Complexity (2019). https://doi.org/10.1155/2019/4182148

    Article  Google Scholar 

  17. Li, G.; Shuang, F.; Zhao, P.; Le, C.: An improved butterfly optimization algorithm for engineering design problems using the cross-entropy method. Symmetry (Basel) (2019). https://doi.org/10.3390/SYM11081049

    Article  Google Scholar 

  18. Nobile, M.S.; Cazzaniga, P.; Besozzi, D.; Colombo, R.; Mauri, G.; Pasi, G.: Fuzzy self-tuning PSO: a settings-free algorithm for global optimization. Swarm Evol. Comput. (2018). https://doi.org/10.1016/j.swevo.2017.09.001

    Article  Google Scholar 

  19. Mortazavi, A.: Bayesian interactive search algorithm: a new probabilistic Swarm intelligence tested on mathematical and structural optimization problems. Adv. Eng. Softw. (2021). https://doi.org/10.1016/j.advengsoft.2021.102994

    Article  Google Scholar 

  20. Saka, M.P.: Optimum design of steel sway frames to BS5950 using harmony search algorithm. J. Constr. Steel Res. 65, 36–43 (2009). https://doi.org/10.1016/j.jcsr.2008.02.005

    Article  Google Scholar 

  21. Fesanghary, M.; Mahdavi, M.; Minary-Jolandan, M.; Alizadeh, Y.: Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput. Methods Appl. Mech. Eng. 197, 3080–3091 (2008). https://doi.org/10.1016/j.cma.2008.02.006

    Article  MATH  Google Scholar 

  22. Daloglu, A.T.; Artar, M.; Özgan, K.; Karakas, A.: Optimum design of steel space frames including soil-structure interaction. Struct. Multidiscip. Optim. (2016). https://doi.org/10.1007/s00158-016-1401-x

    Article  MathSciNet  Google Scholar 

  23. Ayvaz, M.T.; Kayhan, A.H.; Ceylan, H.; Gurarslan, G.: Hybridizing the harmony search algorithm with a spreadsheet “Solver” for solving continuous engineering optimization problems. Eng. Optim. 41, 1119–1144 (2009). https://doi.org/10.1080/03052150902926835

    Article  Google Scholar 

  24. Kaveh, A.; Abadi, A.S.M.: Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls. Int. J. Civ. Eng. 9, 1–8 (2011)

    Google Scholar 

  25. Aydogdu, I.: Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights. Eng. Optim. 49, 381–400 (2017). https://doi.org/10.1080/0305215X.2016.1191837

    Article  Google Scholar 

  26. Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V.: Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Eng. Struct. 134, 205–216 (2017). https://doi.org/10.1016/j.engstruct.2016.12.042

    Article  Google Scholar 

  27. Camp, C.V.; Akin, A.: Design of retaining walls using Big Bang-Big crunch optimization. J. Struct. Eng. (2012). https://doi.org/10.1061/(asce)st.1943-541x.0000461

    Article  Google Scholar 

  28. Yücel, M.; Bekdaş, G.; Nigdeli, S.M.; Kayabekir, A.E.: An artificial intelligence-based prediction model for optimum design variables of reinforced concrete retaining walls. Int. J. Geomech. (2021). https://doi.org/10.1061/(asce)gm.1943-5622.0002234

    Article  Google Scholar 

  29. Kaveh, A.; Hamedani, K.B.; Bakhshpoori, T.: Optimal design of reinforced concrete cantilever retaining walls utilizing eleven meta-heuristic algorithms: a comparative study. Period. Polytech. Civ. Eng. (2020). https://doi.org/10.3311/PPci.15217

    Article  Google Scholar 

  30. Martí, J.V.; Gonzalez-Vidosa, F.; Yepes, V.; Alcalá, J.: Design of prestressed concrete precast road bridges with hybrid simulated annealing. Eng. Struct. 48, 342–352 (2013). https://doi.org/10.1016/j.engstruct.2012.09.014

    Article  Google Scholar 

  31. Aydın, Z.; Ayvaz, Y.: Overall cost optimization of prestressed concrete bridge using genetic algorithm. KSCE J. Civ. Eng. 17, 769–776 (2013). https://doi.org/10.1007/s12205-013-0355-4

    Article  Google Scholar 

  32. Camp, C.V.; Assadollahi, A.: CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Struct. Multidiscip. Optim. 48, 411–426 (2013). https://doi.org/10.1007/s00158-013-0897-6

    Article  Google Scholar 

  33. Nigdeli, S.M.; Bekdaş, G.; Yang, X.S.: Metaheuristic optimization of reinforced concrete footings. KSCE J. Civ. Eng. (2018). https://doi.org/10.1007/s12205-018-2010-6

    Article  Google Scholar 

  34. Turkish Standards (TS500)- Requirements for design and construction of reinforced concrete structures, Ankara, Turkey

  35. Mortazavi, A.; Moloodpoor, M.: Differential evolution method integrated with a fuzzy decision-making mechanism and Virtual Mutant agent: theory and application. Appl. Soft Comput. (2021). https://doi.org/10.1016/j.asoc.2021.107808

    Article  Google Scholar 

  36. Ersoy, U., Ozcebe, G.: Reinforced Concrete I. Istanbul (2012)

  37. Tang, K.; Li, Z.; Luo, L.; Liu, B.: Multi-strategy adaptive particle Swarm optimization for numerical optimization. Eng. Appl. Artif. Intell. (2015). https://doi.org/10.1016/j.engappai.2014.08.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Kamal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, M., Mortazavi, A. & Cakici, Z. Optimal Design of RC Bracket and Footing Systems of Precast Industrial Buildings Using Fuzzy Differential Evolution Incorporated Virtual Mutant. Arab J Sci Eng 48, 13073–13089 (2023). https://doi.org/10.1007/s13369-023-07650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07650-x

Keywords

Navigation